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ARTICLE INFO                           ABSTRACT 

 

Despite being crucial to global biodiversity and environmental health, many Protected 

Areas (PAs), including Nechsar National Park (NNP), which is part of the Somalia-

Masai Center of Endemism, experienced a threatening loss of functionality due to 

continued land conversions and degradation, caused by human and natural drivers. 

Detailed analysis of Future Land Use Change (FLUC) for PAs is vital to follow up and 

prevent the potential impacts of disastrous changes on biodiversity and ecosystem 

services via proactive interventions. This study analyzed the size and intensity of FLUC 

in NNP, in Ethiopia, using Landsat imageries (1986, 2002, and 2020), four explanatory 

variables, CA-Markov and intensity analysis models, and GIS software including 

TerrSet_2020. Kappa Index of Dis/Agreements/ was applied to check the effectiveness 

of CA-Markov and the result was 0.893 (Kstandard). Concerning the overall change, the 

study revealed a rapid transition from 2020-2040 and slightly slower from 2040-2060, 

but still expected to cover 45% of the study area. A continued decline is projected in 

forest, woodland, and grassland with net losses of 19%, 26%, and &70%, respectively. 

The most active gain that intensively targeting woodland and grassland is predicted in 

bush/shrubland, whereas the most active loss is from grassland. Similarly, active loss 

is anticipated from forest due to intensive displacement by cultivated and woodland. 

The study highlighted that the predicted intensive transitions can be triggered by 

change drivers under the concept of uniform intensity.They also have implications in 

escalating the ongoing ecological problems, unless targeted interventions are 

implemented to control and reverse them. Additionally, integrating CA-Markov with 

intensity analysis is crucial to quantify the underlying characteristics of FLUC and 

provide valuable information for rational policy making. 
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INTRODUCTION  

Biodiversity, the complex diversification of species and ecosystems (Mekonnen, 2022), is 

indispensable for environmental processes, socioeconomic development, and human survival 

(Kubiszewski et al.,2017; Winkler et al., 2021). Nevertheless, due to increased human-driven 

land use change (LUC) and degradation, unprecedented biodiversity loss has been observed 

worldwide over the last few decades (Feng et al., 2023; Venter et al., 2016). The persistent loss 

in biodiversity has resulted in multifaceted environmental and socioeconomic problems: 

climate change, agricultural production decline, and food insecurity (Venter et al., 2016). 

Thus, the establishment and adequate management of PAs are essential instruments for 

sustainable biodiversity conservation and utilization, particularly nowadays, when human 

activities are posing pervasive and intensive threats to the environment (Marchese, 2015; Venter 

et al., 2016). In this study, PAs refer to biologically diverse (both flora and Fauna) sites and any 

geographical areas that are gazetted for protecting biodiversity and restoring critically 

/endangered/ species and habitats through legal frameworks (Lu et al., 2018). Besides 

biodiversity conservation and ecological services, PAs are important for sustainable livelihood 

improvement, diversification, and also ecotourism development, particularly in developing 

countries, without harming the natural status quo of ecosystems (Cunha et al., 2021; Mekonnen, 

2022). Accordingly, the number and area of PAs have increased, and today, there are more than 

155,584 PAs, covering 12.5% of the Earth’s surface (Jin & Fan, 2018). 

Although the number and areas are advancing, PAs across the globe have been under 

pressing habitat (ecosystems) degradation and biodiversity loss due to increased land transition 

to cultivated and settlement areas, commercial farms and livestock grazing, and over-

exploitation of natural forests for the demand of fuel and construction materials (Bailey et al., 

2015; Lu et al., 2018; Marchese, 2015). Linked with high population growth and prevalence of 

natural resources-based subsistence economy, LUC and the resulting impacts have been more 

pervasive and worsened at PAs located in developing countries (Bailey et al., 2015), including 

Ethiopia (Temesgen et al., 2022); although the highest biodiversity and PAs concentration of 

the world are found in these countries (Naughton-Treves et al., 2005). For example,in Savannah, 

Africa, more than 82% of biodiversity conservation areas have been under the state of failure, 

which is mainly attributed to deforestation and land degradation because of persistent and 

daunting socioeconomic pressures from local communities coupled with administration 

problems (Robsonetal.,2022).Thus, quantifying and mapping the trends and patterns of LUC 

in PAs, particularly in developing countries, have advantages for sustaining the global 

biodiversity and their multifold ecological and socioeconomic benefits. 

Like other countries, with the major objective of protecting biodiversity-enriched sites from 

human pressures and preserving endangered and endemic species, Ethiopia has gazetted different 

PAs, including 20 national parks, since the late 1960s (Temesgen et al., 2022). PAs in Ethiopia 

are known for their biodiversity, ecological services, opportunities for ecotourism development 

and livelihood sources, particularly for local communities (Mekonnen, 2022). Nevertheless, 

unregulated and ecologically destructive socioeconomic pressures from people living in PAs and 

surrounding areas resulted in rapid LUC processes, habitat impoverishment, and biodiversity loss 

in most of Ethiopia’s PAs (Temesgen et al., 2022; Tesfaw et al., 2018). Studies have indicated that 

due to the bulging out of the number and density of human and livestock population, land 
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conversion to human uses and degradation have been perpetuating rampantly, with looming loss 

of PAs’ functionality, including NNP (where this study was conducted) (Menbere, 2021). 

Overall, due to the rapidly growing and diversifying anthropogenic activities, most of the PAs in 

the country are currently on the edge of collapse with a drastic extinction of their flora and fauna 

species, including large wild animals (Muhammed et al., 2016; Tesfaw et al., 2018). 

Among the gazetted PAs in Ethiopia, NNP is the richest in biodiversity (flora and fauna) 

within highly diversified ecosystems that range from evergreen forests to aquatic ones 

(Mekonnen, 2022). It is also known globally for its multifold ecological services. In addition, 

NNP has played a prominent role in maintaining the livelihoods of many rural and urban dwellers 

for a long time (Fetene et al., 2015). However, similar to other PAs in Ethiopia, due to the rise of 

anthropogenic activities: expansion of cultivated and settlement areas, exhaustive livestock 

grazing, and overproduction of wood for fuel and other uses, NNP has been exposed to rampant 

LUC and degradation (Deribew, 2019; Mekonnen, 2022). The recurrence of wildfires and 

encroachment of invasive shrubs and bushes are other escalating factors of the LUC dynamics 

and other ecological problems. As a result, it is currently identified as one of Ethiopia’s PAs that 

are strained by serious habitat, biodiversity, and species losses, including endemic and rare ones 

(Mekonnen, 20220; Muhammed et al., 2016). 

Empirical and precisely measured evidence about FLUC, particularly in areas where 

preserved for biodiversity conservation and protection, but under pressures of degradation, and 

human interventions is vital for better understanding the spatiotemporal trends of the change, 

examining its adverse consequences on biodiversity and ecosystem services, and designing 

feasible and proactive strategies that enable to monitor the expected changes and their 

consequences with minimal cost of interventions (Cunha et al., 2021). However, in Ethiopia, the 

attention given for quantifying and mapping the FLUC trends of PAs is very scant, specifically 

for NNP has not yet been predicted and mapped. 

Remote Sensing data (Satellite imageries) and Geographic Information System (GIS) tools 

are essential for quantifying and mapping the spatiotemporal changes in land use and cover 

(Cunha et al., 2021). There are also different statistical and spatial models for simulating and 

predicting FLUC (Legesse, 2019). However, the key challenge is lack of/ identifying/ a model 

that can simulate and forecast FLUC with consideration of the spatiotemporal variations in 

magnitude and drivers of the change (Zadbagher et al., 2018). Among the available land change 

prediction models, the Cellular Automata-Markov chain model (CA-Markov) is the most 

commonly recommended and used model because of its capability for simulating and predicting 

FLUC by taking into account both the spatial and temporal dimensions of multidirectional land 

transition processes (Hyandye & Martz, 2017). 

Moreover, a comprehensive measurement and information regarding the transitions’ nature 

and intensity in LUC are valuable for better understanding, informed decisions, and enhanced 

management (Aldwaik & Pontius, 2012). In this regard, integrating the CA-Markov model with 

appropriate change analysis tools is crucial. Among the land change analysis models /methods/, 

Intensity Analysis is the most comprehensive mathematical method that enables us to examine 

the intensity of LUC characteristics simultaneously at the interval, category, and transition 

levels. It is also useful to generate information about stationarity, uniformity, and the reasons 

behind each transition (Aldwaik & Pontius, 2012). 
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Therefore, this study was conducted at NNP in the Southern part of Ethiopian Rift Valley 

Lake Basin (ERVLB) to predict and analyze the intensities of FLUC within the time intervals: 

2020-2040 (First Time Interval of Prediction; FTIP) and 2040 -2060 (Second Time Interval of 

Prediction; STIP) by using the CA-Markov model and intensity analysis framework. The results 

obtained from such a detailed study can be helpful to managers, planners, and other stakeholders 

of NNP to have clear evidence concerning the FLUC characteristics such as fast/slow, 

active/dormant, and targeted/avoided; to identify stationary trends and systematically targeted 

transitions and then to implement economically reasonable and ecologically targeted future 

management plans. Additionally, the study’s results can be input to quantify the effects of FLUC 

on biodiversity and ecosystem services in the study area. 

MATERIALS AND METHODS  

Study Area 

The study site is found between 5°51' and 6°05' N latitude, and 37°32' and 37°48' E 

longitude (Fig. 1) with a 41400ha area coverage. It is located at East of Arba Minch Town, in 

the upper part of Segen river catchment of ERVLB. The meteorological data collected from 

the Ethiopian Meteorology Agency (EMA, 2022) showed that in the study area, the total annual 

Rainfall is between 622 and 1177 mm, with 888.38mm average value for 33 years. The average 

annual minimum and maximum temperatures are between 16 and 200C, and 30 and 350C, 

respectively. 

 

Figure 1 

 Map of the study area (Note: this study area map was adopted from (Mekonnen, 2022; Tadesse, 

2020; Tsegaye et al., 2017) and used merely for research purposes) 

NNP is one of the most important natural heritages for biodiversity conservation in 

Ethiopia, containing more than 90 mammal, 350 bird, and 800-1000 plant species with a 

significant number of endemic and endangered species (Muhammed et al., 2016). It also has a 

prominent role in hosting many international and continental migratory bird species. The 

terrestrial parts of the park covered by evergreen natural riverine forests at the Western and 
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Eastern edges; woodland, and bush/shrub on the volcanic hill (locally named ‘God’s Bridge’), 

and grassland located at the Eastern part (Deribew, 2019). 

The well-diversified ecosystems, natural springs, and wildlife of the park, jointly with 

spectacular landscapes, provide a huge opportunity for tourism development and related 

economic activities for Arba Minch town and the surrounding areas. Furthermore, it has been 

used as the main source of livelihood, income and wood demand for many semi/pastoralists/ 

and urban dwellers (Deribew, 2019). However, over the last few decades, due to population 

growth, the anthropogenic interventions for socioeconomic demands have been increased and 

become beyond the park’s carrying capacity, leading to marked ecosystem, biodiversity and 

species destruction. These situations undermine the park’s functionality for future biodiversity 

conservation and ecosystem services (Mekonnen, 2022). Thus, examining the trends and 

intensity of FLUC is imperative to understand the potential impacts of the changes and to 

address them by implementing evidence-based and long-term management plans. 

Image Acquisition, Preparation and Classification  

In this study, Landsat images of 1986, 2002, and 2020 were downloaded from the United 

States Geological Survey /USGS/ (http://glovis.usgs.gov) to generate data about historical land 

use change trends that were used as input for simulating and predicting FLUC. All the images 

were already projected to UTM projection, zone 37, and WGS 84 datum. To minimize the 

cloud effect, they were taken from the dry seasons with cloud cover (0%). The necessary image 

preprocessing activities, Geometric and Atmospheric corrections, were processed in ERDAS 

Imagine 2015. The preprocessed images were classified into six land use types: forest, 

woodland, bush/shrubland, grassland, water area, and cultivated land in ArcGIS 10.8 using the 

Support Vector Machine algorithm (Franc et al., 2011; Medina et al., 2019). The detailed 

description and nomenclature of land types are presented in Table 1. 

Table 1  

Nomenclature and descriptions of land use types: Adopted from (Fetene et al., 2015)  

Land type Descriptions 

FL Includes natural forests along river courses with a tree canopy of more than 10% 

BS Areas covered by the mixture of small shrubs and bushes with a range of 2 to 5m height 

WL  Includes areas covered by dense woodland with trees’ height range from 6 up to 20 m, and 

open woodland (Wooded grassland), which dominated by grasses and herbs  

GL Includes areas covered by grasses that are used for wild animals and livestock grazing  

WA The part of the park that is covered by water (rivers and parts of lakes) 

CL It includes all areas used for crop production and rural houses inside the park. 

     * FL= Forest, BS= Bush/shrubland, WL= Woodland, GL= Grassland, WA= Water Area, and CL= Cultivated land 

Accuracy Assessment 

Accuracy assessment (AC) has been considered as one of the crucial steps in land change 

studies for validating the accuracy level of classified images (Congalton & Green, 2008). Table 

2 displays the sample size used for AC, which was determined by following the mathematical 

equations and the rule of thumb specified by (Congalton & Green, 2008). The training points 

and ground references, utilized for image classification and AC for 2020, were collected 

http://glovis.usgs.gov/
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through field observations using GARMIN-GPS, whereas Topographic map (1:50,000) of the 

study area for 1986 and Google Earth (https://www.google.com/earth/), 2002 were used. 

Table 2  

Sample size for accuracy assessment of land use maps of 1986, 2002, and 2020 

 
Land Type *FL BS WL GL WA *CL Total sample 

  
 Y

ea
r   

1986 50 86 252 112 128 50 678 

2002 50 123 241 84 128 50 676 

2020 50 211 133 78 139 50 661 

     *The calculated sample size of forest and cultivated land was less than 50. Thus, considering the rule of thumb in 

(Congalton    &   Green, 2008), the sample size for these land types was raised to 50 

The Kappa coefficient was employed for AC, and the outputs were 90.84%, 93.52%, and 

95.20% for 1986, 2002, and 2020, respectively. These results indicated that the classified land 

use maps are enough for post-classification operations, including FLUC prediction (Table 3). 

Table 3 

 Confusion matrix results for accuracy assessment (all values in %) 

Land use type  FL SB WL GL WA CL OA Khat 

Y
ea

r 

 PA 89.58 84.27 95.14 88.33 100 93.75   

1986 UA 86.00 87.21 93.25 94.64 98.44 90.00 92.92 90.84 

 PA 95.56 95.08 93.88 87.78 100 100   

2002 UA 86.00 94.31 95.44 94.05 100 92.00 94.97 93.52 

 PA 95.92 98.54 91.55 92.31 100 95.83    

2020  UA 94.00 95.73 97.74 92.31 100 92.00 96.22 95.2 

              PA= Producers’ Accuracy; UA= Users’ Accuracy; OA= Overall Accuracy and Khat = Kappa coefficient 

Data Set and Methods to Predict FLUC 

The CA-Markov model was employed to simulate and forecast the FLUC in NNP by using 

TerrSet IDRISI software (version 20). For simulating and predicting future land use and land 

cover change through this model, three major steps are needed, which are discussed below in 

detail. Figure 3 shows the procedures and steps followed to predict the FLUC in this study. 

Preparation of Transition Probability Matrix  

The Markov Chain (MC) was used to quantify the probability rate of transitions among 

different land use types between two points of a given time interval. It is the most widely used and 

effective model (Gidey et al., 2017; Liping et al., 2018; Shaar et al., 2021). I.e., MC helps us to 

produce the transition probability matrixes and transition areas from historical land use maps. The 

distribution of each land use type at time t+1 (Lt+1) projection is determined by the distribution 

of land types at time t (Lt) and transition probabilities, calculated by (Equation 1) (Waseem et al., 

2015). The transition probability matrix (Pij) from ith land type to jth type was computed based on 

the matrix (Equation 2). 

                   L
+ 1 
=  P𝑖𝑗 ∗ Lt                                                                     (1) 

https://www.google.com/earth/)
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 𝑃𝑖𝑗 =

𝑃11 𝑃12 ⋯ 𝑃1𝑛
𝑃21 𝑃22 ⋯ 𝑃2𝑛
⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮
𝑃𝑛1 𝑃𝑛2 ⋯ 𝑃𝑛𝑛

                                                        (2) 

* (0≤Pij ≤ 1 and ∑ 𝑃𝑖𝑗 = 1, (𝑖, 𝑗 = 1, 2,3,… , 𝑛)𝑛
𝑗=1 )                                    (3) 

Where; Lt   and Lt+1 are the status of land use types at time t and time t+1, respectively; ith land use 

type at time t and jth land type at time t+1 and n is number of land types in the study area. 

Preparation of Suitability Maps  

The suitability maps indicate the suitability level of each pixel for transferring from a land 

use type to other types. They can be prepared by generating information from socioeconomic 

and biophysical factors /explanatory variables/ (Zadbagher et al., 2018). In this study, seven 

static variables were initially identified based on empirical literature (Gashaw et al., 2018; Gidey 

et al., 2017; Legesse, 2019; Tadese et al., 2021) and the researchers’ lived experience in the study 

area. Among these, distance from cultivated, roads, water bodies, and slope of the study area, 

which had relatively higher predictive power, were considered to produce suitability maps by 

using the Support Vector Machine algorithm with the Kernel of RFB in TerrSet (Fig. 2). 

 

Figure 2 

Maps of explanatory variables: (A) distance from roads, (B) distance from cultivated areas, (C) 

distance from Water bodies, and (D) slope in the study area 

The Cellular Automata (CA) model (Equation 4) is more effective for simulating and 

predicting FLUC with adequate consideration of the spatial dimension of change at the expense 

/little/ consideration of the temporal aspects. On the contrary, the MC is more effective for 

considering the temporal dimensions of change (Shaar et al., 2021). Since the CA-Markov model 

contains the advantages of both CA and MC models, opted to predict FLUC in NNP. 

A B 

D C 
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 (𝑡, 𝑡 + 1) = 𝑓(𝑆(𝑡),𝑁)                            (4) 

Where, f is the transformation rule of cellular states in local space, N is the Cellular field, and S is 

the set of limited and discrete cellular states 

Figure 3 

Flow chart of the procedures and steps for predicting FLUC in the study area 

Model Validation Techniques 

Model validation is one of the preconditions for effective prediction of future land use and 

land cover change trends and patterns (Shaar et al., 2021). In this study, the prediction 

performance of CA-Markov was checked by using the Kappa Index of Agreement/Disagreement 

(KIA) in TerrSet. KIA is the most commonly used statistical technique (Gidey et al., 2017; 

Liping et al., 2018; Shaar et al., 2021). If the values of KIA statistics are between 0.60 and 0.8, 
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it indicates the model is sufficient, and greater than 0.80, it is highly sufficient for predicting 

the trends and patterns of FLUC (Shaar et al., 2021). In this study, model validation processes 

were undertaken by simulating and predicting the land use patterns of 2020 based on the transition 

probabilities obtained from the land use maps of 1986 and 2002. Additionally, area and visual 

comparisons between the actual and predicted use maps of 2020 for each land use type were also 

made for further validation of the model's performance. After the validation processes were 

completed, the CA-Markov was applied to predict FLUC for 2040 and 2060 by using the 

transition probabilities generated from the land use maps of 1986 and 2020 and 2020 and 2040, 

respectively. 

Intensity Analysis (IA) 

 The transition matrix was primarily used to compute the pixel counts of persistence land, 

and gross gains/losses for each land use type during the FTIP (2020 - 2040) and STIP (2040 - 

2060). Although helpful for interpreting some characteristics of LUC, the output of the transition 

matrix is not enough to distinguish whether the observed transitions are due to the area proportion 

of each land use type or the strength/intensity/ of the change (Aldwaik & Pontius, 2012). Thus, 

further analysis with consideration of the effects of the spatial extent of each land use type, 

strength of transition/gain and loss/, and duration of time intervals, is necessary to get sufficient 

and reliable information. Accordingly, the Intensity Analysis framework (IA) was applied to 

examine the intensity of FLUC in both time intervals of the prediction. IA is important to quantify 

the underlying characteristics of land use and land cover change at three levels: interval, category, 

and transition, and to identify the stationary and uniform patterns (Aldwaik & Pontius, 2012). The 

procedures of the IA model are displayed (Fig. 4). 

The Interval level of intensity analysis (ILI) is the 1st level of IA that was applied for 

computing the size of FLUC and the annual rate of change across each time interval (Equation 5). 

It is important to answer the question, in which time intervals is the annual rate of overall change 

relatively slow versus fast (Aldwaik & Pontius, 2012). The IA at this level compares the observed 

annual change intensity with a uniform intensity that would exist if the annual changes were 

uniformly distributed across the entire time interval, which is calculated based on (Equation 6) 

(Aldwaik & Pontius, 2012). 

The category level of intensity analysis (CLI) is the 2nd level of IA and used to analyze the 

intensity of gross gain and loss across the land use types and identify which land use types are 

relatively dormant versus active in terms of both annual gain and loss within a given time interval. 

The intensity of annual gain and loss was calculated by (Equations 7 and 8), respectively. 
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Figure 4 

Flow chart of intensity analysis (Aldwaik & Pontius, 2012) 

The 3rd level of IA is the transition level of intensity analysis (TLI), and applied to quantify 

the intensity of transitions among land use types. It enable us to identify transitions that are 

systematically targeted and avoided (Aldwaik & Pontius, 2012). Equation (9) was used to 

calculate the intensity of the transition from type i to n during the interval [Yt, Yt + 1], where 

I # n. Equation (10) was applied to calculate the uniform intensity of the transitions from all 

non-n types to type n (Yt, Yt + 1). If Rtin is greater than Wtn, then the gain in n displaces i; if 

Rtin is less than Wtn, then the gain in n does not affect i (Aldwaik & Pontius, 2012). Likewise, 

the losing component of TLI is employed to quantify the size of land transitions from the losing 

land types. Equation (11) computed the observed intensity of the transition from land use type 

m to type j during the given time interval (Yt, Yt + 1) relative to the size of type j at time t+1, 

where j # m and equation (12) used for the uniform intensity of transition from land type m to 

all other non-m types (Yt, Yt+1) relative to the size of all non-m types at time t+1. If  Qtmj is 

greater than Vtm, then j targets the loss in m; if Qtmj is less than Vtm, then j avoids the loss in m 

(Aldwaik & Pontius, 2012). Table 4 shows the mathematical symbols and notations of IA, 

adopted from (Aldwaik & Pontius, 2012). 
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𝑆𝑡 =
∑𝐽
𝑗=1  [(∑ 𝐶𝑡𝑖𝑗

𝐽
𝑖=1 )−𝐶𝑡𝑖𝑗]

⁄ [∑
𝐽
𝑗=1 (∑ 𝐶𝑡𝑖𝑗

𝐽
𝑖=1 )]

𝑌𝑡+1
−𝑌𝑡

𝑥100%                                                    (5) 

U =
 ∑𝑇−1𝑡=1 {∑ [(∑ 𝐶𝑡𝑖𝑗

𝐽
𝑗=1 )−𝐶𝑡𝑖𝑗]

𝐽
𝑗=1 }/[∑ (∑ 𝐶𝑡𝑖𝑗

𝐽
𝑖=1 )

𝐽
𝑗=1 ]

𝑌𝑇−𝑌1
x100                                                            (6) 

Gtj =
[(∑ 𝐶𝑡𝑖𝑗 

𝐽
𝑖=1 ) −𝐶𝑡𝑖𝑗]/(𝑌𝑡+1

−𝑌𝑡)

∑ 𝐶𝑡𝑖𝑗
𝐽
𝑖=1

x100                                                                                              (7) 

Lti =
[(∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1 )−𝐶𝑡𝑖𝑗]/(𝑌𝑡+1

−𝑌𝑡)

∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1

x100                                                                         (8) 

Rtin =

𝐶𝑡𝑖𝑛
(
𝑌𝑡+1
−𝑌𝑡)

⁄

∑ 𝐶𝑡𝑖𝑗
𝐽
𝑗=1

x100                                                                                                                           (9) 

Wtn =

[(∑ 𝐶𝑡𝑖𝑛
𝐽
𝑖=1 )−𝐶𝑡𝑛𝑛]

(𝑌𝑡+1
−𝑌𝑡)

⁄

∑J
j=1 [(∑ 𝐶𝑡𝑖𝑗

𝐽
𝑖=1 )−𝐶𝑡𝑛𝑗]

x100                                                                      (10) 

Qtmj =
[
𝐶𝑡𝑚𝑗

(𝑌𝑡+1−𝑌𝑡)⁄ ]

∑ 𝐶𝑡𝑖𝑗
𝐽
𝑖=1

𝑥100                                                                                        (11) 

Vtm =

[(∑ Ctmj
J
j=1 )−Ctmm]

(𝑌𝑡+1−𝑌𝑡)
⁄

∑J
j=1 [(∑ 𝐶𝑡𝑖𝑗

𝐽
𝑖=1 )−𝐶𝑡𝑖𝑚]

𝑥100                                                                     (12) 

Table 4 

Mathematical symbols and notations of variables used in intensity analysis   

Symbols Meaning of Symbols   

J Number of land types 

j Index for a type at the final time point for a particular time interval 
 

i Index for a type at the initial time point for a particular time interval 
 

T Number of time points 

m Losing type index for the selected transition 
 

n Gaining type index for selected transition 
   

t Index for the initial time point of interval [Yt, Yt+1], where t ranges from 1 to T-1 
 

Yt Year at time point t 
   

Ctij Number of pixels that transition from type i at time Yt to type j at the time Yt+1 
 

St Annual change for time interval [Yt, Yt+1] 
 

U Value of uniform line for time intensity analysis 
 

Gtj Annual intensity of gross gain of type j for time interval [Yt, Yt+1] relative to the size of type j at time t + 1 
 

Lti Annual intensity of the gross loss of type i for time interval [Yt, Yt+1] relative to the size of type i at time t 
 

Rtin Annual intensity of transition from type i to type n during the time interval [Yt, Yt+1]; where I # n 

Wtn Value of uniform intensity of transition to type n from all non-n types at time Yt during time interval [Yt, Yt+1] 

Qtmj Annual intensity of transition from types m to type j during the time interval [Yt, Yt+1]; where j # m 
 

Vtm Uniform intensity of transition from type m to all non-m types at time Yt+1 during time interval [Yt, Yt+1] 
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RESULTS AND DISCUSSIONS 

Magnitude and Trends of LUC from 1986 to 2020 

The results of the historical LUC analysis in Table 5 indicated that all land use types in the 

study area experienced significant change, although the values differed between 1986 and 2002 

and 2002 and 2020. Among the land use types, woodland had the largest (39.24 and 38.25%) share 

of the total land of the study area, while cultivated land accounted for the smallest (1.17% and 

2.00%) in 1986 and 2002, respectively. However, in 2020, bush/shrubland covered the largest 

portion (34.85%) of the study area with 147% of land gain between 1986 and 2020. The woodland 

lowered to the third position with a 43.35% loss from its area coverage in 1986. Similarly, the 

proportion shared by grassland and forest declined from 17.70% and 7.73% in 1986 to 12.95% 

and 4.28% in 2020, respectively. 

Regarding the change in spatial extent, bush/shrubland, water, and cultivated exhibited a 

continued expansion at the expense of other land use types. For example, a 5831ha area of 

bush/shrubland in 1986 was expanded by 40.43% and 76.08%, while a 16247ha area of woodland 

was shrunk down by 2.53% and 41.88% in 2002 and 2020, respectively. The forest and grassland 

coverage declined by 20.57% and 24.04% in 2002 and 30.25% and 3.66% in 2020, respectively. 

Although the study area is a biodiversity conservation and protection site, the analysis revealed 

the expansion of cultivated land by 70.15% in 2002 and 33.08% in 2020. 

Table 5 

Trends of past land use change (1986 - 2020) 

Land 

type 

 Area in ha   Area changes in ha 

1986 2002 2020   1986 - 2002 2002 - 2020 1986 -2020 

FL 3198 2540 1772  -658 -768 -1426 

BS 5831 8188 14418  2358 6229 8587 

WL 16247 15836 9204  -411 -6632 -7043 

GL 7327 5566 5362  -1761 -204 -1965 

WA 8311 8443 9544  132 1101 1233 

CL 486 827 1101  341 274 615 

Total 41400              

*The sign (-) decrease in area coverage (loss) 

Overall, our analysis indicated that throughout the study period, the forest, woodland and 

grassland remained in the losing category, whereas the rest types were in the gaining category. In 

line with our finding, the previous studies in different PAs of Ethiopia found a significant loss in 

vegetation land types due to deforestation, overgrazing, and agricultural land expansion by the 

local communities. For example, a study by (Debebe et al., 2023) in Semien Mountain National 

Park found a 366% and 159% extension in cultivated and built-up areas at the cost of 31% and 

16% forest and grassland decline, respectively, from 1984 to 2020. The study by (Hailu et al., 

2018) in Gibe Sheleko National Park also reported an increment trend in bush and shrubland by 

51.5% and decline in forest land by 66.8%. Moreover, several land change studies conducted in 

non-protected areas of Ethiopia (Legesse, 2019; Shiferaw et al., 2019;Yesuph & Dagnew, 2019) 

have found the spatial expansion of bush and shrubland by displacing a significant portion of 

forest, woodland, and grassland. Concerning the cultivated land, consistent with the findings of 
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this study, agricultural land expansion at the cost of more than 3 million km2 vegetation cover of 

PAs was reported in USA (Lu et al., 2018). Likewise, many researchers (Bailey et al., 2015; Silva 

et al., 2021; Verburg et al., 2006) found a continued land conversion from forest and woodland to 

anthropogenic land uses in different biodiversity conservation areas of developing countries. 

Results of Model Validation  

The VALIDATE cross-tabulation module in TerrSet (version 20) was used to assess the 

performance of the CA-Markov model for predicting the FLUC for the years 2040 and 2060. The 

validation process was conducted based on the comparison of agreement and disagreement of 

counts and allocation of pixels between the simulated and actual land use maps of 2020, and the 

results are presented in (Table 6). The analyses displayed that the values of KIA statistics, Kno, 

Klocation, Klocation strata, and overall Kappa (Kstandard) were equal and above 0.9 (90%). These 

confirmed that the simulated land use map was nearly the same as the actual land use map (Fig.5). 

This exemplifies that the CA-Markov model has sufficient performance to predict successfully 

the FLUC of the study area based on the given data. Like this study, previous studies in Ethiopia 

(Gidey et al., 2017; Legesse, 2019; Mathewos et al., 2022; Tadese et al., 2021) and elsewhere 

(Cunha et al., 2021; Nogueira et al., 2014; Waseem et al., 2015) were followed this method for 

CA-Markov Model validation and found KIA values that ensured the suitability of the model for 

forecasting future land use/cover change. 

Table 6  

Information allocation, Quantity, and Kappa index results for model validation  

Information Allocation Information of Quantity 

 No[n] Medium[m] Perfect[p] 

Perfect[P(x)] P(n) = 0.6263 P(m) = 0.9864 P(p) = 1.0000 

Perfect Stratum[K(x)]  K(n) = 0.6263 K(m) = 0.9864 K(p) = 1.0000 

Medium Grid[M(x)]  M(n) = 0.5719 M(m) = 0.9247 M(p) = 0.9177 

Medium Stratum[H(x)]  H(n) = 0.1429 H(m) = 0.2943 H(p) = 0.2944 

No[N(x)]  N(n) = 0.1429 N(m) = 0.2943 N(p) = 0.2944 

Agreement Chance    0.1429 

Agreement Quantity    0.1514 

Agreement Strata    0.000 

Agreement Grid cell   0.6304 

Disagree Grid cell   0.0617 

Disagree Strata    0.000 

Disagree Quantity      0.0136 

Kappa Index of Agreement for the ability to predict for 2020 

Statistics     Index 

Kno   0.9121 

Klocation   0.9109 

Klocation Strata    0.9109 

Kstandard /Overall Kappa/     0.8933 

In addition, the area comparisons between simulated and actual land use maps of 2020 for 

each land use type also approved the permissibility and fitness of CA-Markov with 94.78% of 
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overall accuracy (Table 7). For example, the simulated area proportion of bush/shrubland and 

woodland (35.30%, and 20.28%) was equivalent to their actual area proportion (34.82% and 

22.23%) with accuracy level of 98.65% and 90.80%, respectively. The lower consistency was 

relatively observed in forest and grassland with 84.08% and 85.25% accuracy, respectively, but 

they were reasonably matched and adequate indicators of the model’s validity. 

Land Transition Probabilities for 2040 and 2060  

The FLUC simulation scenario development and prediction activities were done using 

TerrSet based on the datasets, statistical tools, and steps displayed in (Fig. 3). The transition 

matrix in (Table 8) presents the proportion of transition probabilities for each land use type 

converted to others during the FTIP and STIP. The bold values in the diagonal axis represent the 

probabilities of persisted land, and the off-diagonal values indicate probabilities of land 

transitions (gains/losses/ for each land use type. 

Table 7  

Comparison of area (ha) between the simulated and actual land use map of 2020  

Land use 

type 

Actual 

area (ha) 

Simulated 

area (ha) 

Difference 

(ha) 

Difference 

(%) 

Accuracy 

(%) 

FL 1772 1511 261 15.92 84.08 

BS 14418 14613 195 1.35 98.65 

WL 9204 8395 809 9.20 90.80 

GL 5362 6216 854 14.75 85.25 

WA 9546 9535 11 0.11 99.89 

CL 1101 1132 31 2.82 97.18 

Total  41400 41400    
                       Overall accuracy = 94.78% 

The study’s results revealed that the lower persistence probability (< 59%) is anticipated in 

forest, woodland and grassland. Such types of vulnerability in natural forests and grassland 

landscapes are more likely attributed to deforestation and low regeneration capacity due to 

continued and exhaustive utilization for livestock grazing and wood production with little/no 

restoration practices (Debebe et al., 2023;Deribew, 2019; Mekonnen, 2022; Tsegaye et al., 2017). 

Similar to this study’s findings, a lower persistence probability in forest and grassland was 

reported by (Cunha et al., 2021;  Kodero et al., 2024; Nogueira et al., 2014). 

As displayed in Table 8, among the vegetation land use types, bush/shrubland is the only one 

that experienced the highest persistence probability (≈ 71%) in both time intervals. This could be 

attributed to different factors. First, the nature of the land type, i.e., once established in a given 

landscape, it has a lower probability to transit towards other types within a short period and/or/ 

human interventions are needed to replace (Pierce et al., 2019). Second, in the study area, the 

larger portion of bush/shrubland is found at steep slopes and far away from human settlements. 

Third, economically, it is less useful and preferred by local communities, including for charcoal, 

fuel wood, and construction materials production. These situations increase the bush/shrubs’ 

probability of persistence and stability in the study area. 
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Figure 5  

The actual and simulated land use maps of 2020 

Regarding the transition probability, the study showed that the conversion to bush/shrubland 

from forest, woodland, and grassland attained the highest probability. The plausible reasons are 

the expansion of invasive shrub and bush plants, and continued degradation in the latter land use 

types due to continued and unsustainable utilization for livestock grazing and wood production 

by local communities, and by other factors (Deribew, 2019; Fetene et al., 2015; Mekonnen, 

2022). Additionally, the experimental study done by (Pierce et al., 2019) found that in areas 

where other natural resources, such as grasslands, are under pressure from human activities and 

stresses from changes in abiotic factors (soil and climate), shrubs can have the opportunity to 

outpace terrestrial expansion and fast regeneration. Moreover, this predicted transition probability 

is significantly attested by several empirical studies in Ethiopia that found the advancement of 

bush/shrublands in areas where forest areas and grasslands have been subjected to degradation by 

anthropogenic activities (Gidey et al., 2017; Legesse, 2019; Temesgen et al., 2022; Yesuph & 

Dagnew, 2019). 

Table 8  Land transition probability matrix for 2040 (1986 - 2020) and 2060 (2020 - 2040)  

Transition  

Time 

 

Transition to 

Land use type FL BS WL GL WA CL 

1
9
8
6
 t
o
 2

0
2
0
 

T
ra

n
si

ti
o
n

 f
ro

m
 

FL 0.5532 0.1001 0.0704 0.0921 0.0673 0.117 

BS 0.0347 0.709 0.1663 0.0125 0.0643 0.0133 

WL 0.0043 0.3851 0.5376 0.0622 0.0067 0.0041 

GL 0.0024 0.2349 0.1287 0.5918 0.0381 0.004 

WA 0.0809 0.0505 0.0049 0.0159 0.8478 0.0000 

CL 0.0243 0.0295 0.119 0.0265 0.022 0.7787 

2
0
2
0

 t
o
 2

0
4
0
 FL 0.5704 0.1869 0.1345 0.0584 0.005 0.0447 

BS 0.0297 0.7029 0.1901 0.0181 0.054 0.0051 

WL 0.0041 0.5065 0.4363 0.0411 0.0037 0.0083 

GL 0.0094 0.3887 0.1653 0.4128 0.006 0.0178 

WA 0.0103 0.0515 0.0334 0.016 0.8465 0.0423 

CL 0.0000 0.0669 0.0484 0.0339 0.0409 0.8099 
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For the transition potential to grassland, the higher value is contributed from forest and woodland. 

Likewise, it has also been predicted in the Western USA, from 58% of future loss transition 

probability in forest land, 40% will shift to grassland (Kodero et al., 2024). In normal 

circumstances, the direct transitions from forests to grasslands are uncommon. Similarly, 

transitions from woodland to grassland are naturally rare, unless supported by anthropogenic 

and natural factors (Sala & Maestre, 2014). However, since the last few decades, due to the 

influences of human activities and natural disturbances like climate change and drought, direct 

transitions from forest and woodland to grassland have been predominant (Legesse, 2019). In 

this study area, it can be associated with the massive removal of trees because of charcoal 

production,  repeatedly occurrences of fires by unknown reasons and the pastoralists to get 

additional grazing land for their livestock and land for shifting cultivation, and loss of 

regeneration capacity in forest and woodlands (Deribew, 2019; Tsegaye et al., 2017). Similarly, 

the empirical studies conducted in Semen Mountain National Park (Debebe et al., 2023) and 

Kafta Shiraro National Park (Temesgen et al., 2022) also found a substantial land transition 

directly from forest and woodland to grassland, mainly caused by wildfire occurrence and over-

demanding for fuelwood production. Moreover, the transition to forest, the highest value is from 

bush/shrubland (≈ 71%). This type of transition is common, and can be attained by two major 

reasons in PAs: ecological succession and human interventions to fast regeneration and 

expansion of forests over the areas of other land use types (Nogueira et al., 2014). Supporting the 

findings of this study, several studies highlighted 5 to 30% transition probabilities to forest 

from shrublands as a result of ecological succession and reforestation (Bieluczyk et al., 2023; 

Gui et al., 2025; Nytch et al., 2023). As shown in Table 8, the highest transition to cultivated land 

is contributed from forest. Although it is not common naturally, this land transition probability 

in the study area is largely attributed to the establishment of settlements and expansion of crop 

land by removing the forest areas located at the Eastern edge. 

Predicted Magnitude and Trends of FLUC  

The predicted changes for each land use type were quantified based on the actual land use 

map of 2020 and predicted land use maps of 2040 and 2060 (see Table 9). The prediction results 

showed that there will be sizable land exchange among the land use types in the study area during 

the entire prediction period. In both time intervals, forest, woodland, and grassland are expected 

to exhibit considerable land loss, especially for bush/shrubland in the next four decades.  

Table 9  

Future land use change (2020 – 2060)  

Land  

type 
 Area (ha)  Area change (ha) 

 2020 2040 2060  2020 - 2040 2040 - 2060 2020 - 2060 

FL  1772 1518 1438  -254 -80 -334 

BL  14418 18058 19551  3641 1493 5133 

WL  9204 7302 6800  -1902 -502 -2403 

GL  5362 3176 1526  -2187 -1649 -3836 

WA  9544 10034 10660  490 626 1115 

CL  1101 1313 1426  212 113 325 

Total  41400       
*The sign (-) indicates the loss of spatial coverage (negative change) 
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The largest spatial expansion (35.57%) is anticipated in bush/shrubland, followed by 

cultivated land (29.53%) and water (11.69%), and the largest reduction is predicted in grassland 

(71.59%), followed by woodland (26.13%) and forest (18.85%) between 2020 and 2060. The 

forest, woodland, and grassland areas are expected to decline by 14%, 21%, and 41% during 

the FTIP, and 6%, 8%, and 52% during the STIP, respectively. Similarly, a substantial reduction 

in forests and grasslands in PAs was predicted by (Cunha et al., 2021; Nogueira et al., 2014). 

Additionally, the vast and rapid expansion of bush/shrub and agricultural land over forest lands 

and grasslands were projected in Ethiopia (Gashaw et al., 2018; Gidey et al., 2017; Legesse, 2019; 

Tadese et al., 2021), Ghana (Aniah et al., 2023), and Egypt (Nogueira et al., 2014). 

Predicted Gross Gain, Loss and Persistence Land  

The predicted land use maps in (Fig. 6), and the quantitative computations from cross-

tabulation matrices in (Table 10) showed that although the values differed, all land use types are 

expected to exhibit sizable gain and loss transitions, as well as persistence land during both time 

intervals of the prediction. The results revealed that a 14.32%, 26.66 %, and 40.78% (in FTIP), 

and 18.85%, 26.11%, and 71.54% (in STIP) negative net change (loss) is expected in forest, 

woodland, and grassland, respectively. Conversely, a 35.6% (3641ha in FTIP and 1492ha in 

STIP) of positive net change (Gain) is anticipated in bush/shrubland over the study period. During 

the FTIP, the predicted land loss from grassland, woodland, and forest (51.43%, 48.67% and 

32.89%) is higher than land gain (17.99%, 35.30%, and 21.67%), respectively, which is also true 

in the STIP, although pixel counts/land size/differed (Table 10). 

Table 10 

Pixel counts for persistence land on the main diagonal (underlined) and land changes in the off-main diagonal for 

2020 - 2040 and 2040 -2060 (in bold) 

 

Land use type  

 

Final year of the time interval  
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FL  13212 2817 2028 881 76 674 19688 6476 2820 67.11 
 

 11248 2338 2953 60 90 179 16868 5620 892 66.68 

BS  2772 132479 17740 1692 5038 474 160195 27716 40451 82.70 
 

 4364 164927 21520 2750 6482 603 200646 35719 16583 82.20 

WL  362 44719 52495 3627 324 737 102264 49769 21132 51.33 
 

 336 36112 42550 1363 329 442 81132 38582 5572 52. 43 

GL  493 20283 8628 28935 311 929 59579 30644 24296 48.57 
 

 28 13850 8536 12783 54 32 35283 22500 18327 36.23 

WA  29 145 94 45 105617 119 106049 432 5441 99.59 
 

 0 1 0 0 111487 2 111490 3 6952 100.00 

CL  0 203 147 103 124 11653 12230 577 2356 95.28 
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* The records for net change are in their absolute values 

About persistency, the highest percentage of persisted land (above 83%) is expected in 

water, followed, by cultivated land and bush/shrubland (Look at the last column in Table 10), 

whereas the lowest (48.57% and 36.23%) is expected in grassland followed by woodland 

(51.33% and 52.45%) and forest (67.11% and 66.68%) during the FTIP and STIP, respectively. 

With slight differences, these findings are consistent with the findings of (Aniah et al., 2023; 

Mathewos et al., 2022; Waseem et al., 2015). The gain-loss-persistent analysis indicated that, like 

the historical LUC processes, the FLUC in the study area will be characterized by non-linear, 

multidirectional, and intensive loss of land from forest, woodland, and grasslands. 

 

Figure 6 

 Future land use maps and changes from 2020 – 2040, 2040 – 2060 and 2020 – 2060 

Intensity of Predicted Land Use Changes (2020 – 2040 and 2040 – 2060)  

Interval Level of Intensity Analysis (ILI)  

In Figure 7 of the ILI analysis, the left side of the graph shows the percentage of area change 

and the right side indicates the percentage of change intensity. The vertical broken line displays 

the intensity of uniform change (1.18%). The analysis demonstrated that the overall FLUC 

(50.27%) predicted in FTIP will be higher than STIP (44.53%). It will also prevail quickly in FTIP 

(1.26%) and slowly in STIP (1.11%). As shown in (Fig.7) the intensity bars are not at the uniform 

line, which indicates the predicted FLUC will not be uniform and perfect stationary for the ILI, 

and the intensiveness of the changes is more likely important than the length of time intervals for 

land transition during the coming four decades in NNP. 
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Category Level of Intensity Analysis/CLI/ 

The CLI of intensity analysis is shown in (Fig. 8). In both graphs (A&B) the paired bars on 

the left side show the gross annual gain and loss of each land use type. The results of the CLI 

displayed that the largest annual gain is predicted in bush/shrubland, whereas the largest annual 

loss is predicted from woodland, followed by grassland and bush/shrubland in both time intervals. 

 
 

Figure 7 

Interval level of intensity analysis for time intervals: 2020 – 2040 and 2040 – 2060 

As shown in the left side of Figure 8; in the study area, land use types with smaller area 

coverage will experience relatively smaller size of land transitions/gains and losses/, and the land 

use types with the larger area coverage also exhibit relatively larger land transitions. However, 

the land type with the smallest size of transition, will have no the most dormant intensity and the 

land type with largest transition have no the most active intensity/gain and loss/, as shown on the 

right side of the same figure (Fig. 8). These indicate that examining the intensity of annual gain 

and loss transition for each land type is necessary to understand whether the transferred land size 

is due to the area proportion at the initial time or the strength of change (Aldwaik & Pontius, 

2012). The broken vertical lines in graphs A & B of (Fig. 8) indicate the intensity of the uniform 

annual change, which is expected in the FTIP and STIP. 

During both time intervals, the most dormant annual gain and loss transitions are predicted 

in water and cultivated land. while active gain and dormant loss are predicted in bush/shrubland. 

The results indicated that for gaining transitions of shrub/bushland, the intensiveness of the 

changes is more likely important than the larger area proportion at the initial time, and the 

opposite is true for its losing transitions. The loss intensity of grassland is expected to be the most 

active in both time intervals, whereas its gain is dormant and less active during FTIP and STIP, 

respectively. Similarly, the annual gain and loss in woodland are more likely to be active at both 

time intervals, while the predicted gain in forest is dormant in the FTIP but active in the STIP. The 

loss intensity analysis for forest revealed active loss in both time intervals and active gain in the 

STIP. These results indicated that the predicted gain in forest, woodland, and grassland, mainly 

attributed to their area proportion, whereas the losses from these land types can be significantly 

attributed to the intensiveness of changes, i.e., the drivers that forced the land types to lose their 

area. Regarding stationarity at CLI, the predicted gain and loss transitions in all land use types, 

except the gain in grassland and forest, are expected to be stationary, although not perfect. 
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Figure 8 

Category level of intensity analysis for 2020 - 2040 (A) and 2040 -2060 (B) 

Transition Level of Intensity Analysis (TLI)  

In the study area, forest, woodland, and grassland are the major natural resources and the 

most important for biodiversity conservation, ecological services, and livelihood opportunities for 

people living in NNP and surrounding areas (Mekonnen, 2022). However, the land change 

analyses (1986 to 2060) demonstrated that these land types have been under intensive loss 

transitions and significantly replaced by bush/shrubland. Therefore, the TLI analysis for FLUC 

focused on the transitions to bush/shrubland (gains) and transition from forest, woodland, and 

grassland (losses). 

As shown on the left side of (Fig. 9), in both time intervals, the predicted annual gain of 

bush/shrubland is contributed from all land use types, but the largest contribution is expected from 

woodland, followed by grassland and forest. However, the transition intensity on the right side 

revealed that the gain of this land type intensively targeted only the loss transition from woodland 
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and grassland and avoided others in both time intervals. As it can be seen in the graph, above 50% 

of the intensity bars for woodland and grassland extended to the right of the uniform lines; 

exemplifying the gain of bush/shrub from these land use types for the next four (4) decades more 

likely due to the intensiveness of the transitions/strength of drivers of the changes but rather the 

largeness of its area. Moreover, the TIL also indicated that all the land transitions toward 

bush/shrubland are expected to be stationary, even though no one is perfect. 

 

Figure 9 

Transition intensity to Bush/shrubland (BS) during 2020- 2040 and 2040 -2060 

Figure 10 displays the area transition (left side) and transition intensity (right side) from 

forest, woodland, and grassland to other types. The results of TLI showed that the predicted 

land loss from forest is anticipated to be replaced by all other land use types, with the largest 

portion by bush/shrubland in both time intervals. However, the transition intensity on the right 

side of Figure 10 pointed out the predicted loss of forest is expected to be intensively targeted 

by cultivated land, although the strength will be relatively lower in FTIP and woodland in the 

STIP. Similarly, the loss from woodland will be targeted by bush/shrubland and avoided by 

other land types across the study time intervals. Furthermore, the loss from grassland will also 

be replaced by all land types, but intensively by bush/shrubland and woodland. In addition, the 

transitions from forest to cultivated land, woodland and water, and from woodland and 

grassland to other land use types are expected to be stationary at the transition level of intensity 

analysis. 
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Figure 10 

Transition intensity from forest (FL), woodland (WL) and grassland (GL) (2020-2040 &2040- 2060) 

IMPLICATIONS OF THE PREDICTED FLUC 

Protected Areas (PAs) are essential for preserving biodiversity and maintaining ecosystem 

services (Marchese, 2015), particularly nowadays, when human activities and ecosystem 

destruction are rapid and worsening (Venter et al., 2016). Nevertheless, most of the PAs across 

the globe are suffering from the adverse consequences of human-induced land use change (LUC) 

and degradation (Menbere, 2021). Despite the short-term economic benefits, habitat conversion 

and exhaustive utilization for socioeconomic activities lead to a drastic loss of biodiversity and 

ecosystem services (Cunha et al., 2021; Lu et al., 2018). Eventually, it can end up with failure in 

PAs and long-lasting environmental and socioeconomic repercussions (Bailey et al., 2015). 

The immense potential for biodiversity conservation and multiple ecosystem services of the 

study considerably depends on natural forest, woodland, and grassland ecosystems (Deribew, 

2019; Tsegaye et al., 2017). However, the predicted land transitions for the next four decades can 

pose considerable threats to its future biodiversity and ecosystem services in different ways. It has 

been documented that due to the rise of anthropogenic encroachments, pervasive land change and 
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degradation are the leading factors for current and future habitat and biodiversity loss in PAs, 

particularly in developing countries (Menbere, 2021). Apart from encompassing the largest flora 

diversity and a significant number of endemic plants in Ethiopia, the natural forest, woodland and 

grassland ecosystems in NNP are the key shelter, food and water source, and reproduction sites for 

fauna species, including many migratory birds Fetene et al., 2015). Thus, the anticipated active 

loss and dormant gain transitions in natural vegetations lead to further degradation in the 

remaining biodiversity of flora and fauna, through habitat impoverishment, reproduction 

disturbance, species loss, deterioration of regeneration capacity and so on. 

Scientific studies confirmed that intensive and rapid land transitions that are mainly 

characterized by net loss in natural vegetation have profound impacts on ecological services of 

natural ecosystems (Feng et al., 2023; Kubiszewski et al., 2017; Winkler et al., 2021; Venter et 

al., 2016). In the study area, the Arba Minch underground water forest, Kulfo riverine forest and 

Sermele riverine forest, and Nechsar grassland have been known for their multitudinal ecological 

services, including regulation of hydrological and atmospheric processes, sequestration of 

GHGs, moderation of microclimate conditions, controlling of soil erosion and sedimentation, and 

water supply for wildlife and local communities (Fetene et al., 2015; Mekonnen, 2022). The 

continuous decline in forest, woodland, and grassland, and the advancement in other land types, 

including cultivated land, can undermine the potential of the study area for future ecological 

services. In addition, particularly at the local level, it can aggravate the existing environmental 

problems: climate change, land degradation, and shortage of water supply (Fetene et al., 2015; 

Mekonnen, 2022). Beyond biodiversity preservation, monitoring the ongoing LUC is crucial to 

maintain the ecological services of the park and to address environmental problems.  

The natural resources, specifically forest and grassland in NNP, have substantial role in the 

livelihood and sociocultural life of local communities. For a long time, millions of farmers and 

urban dwellers living inside and surrounding areas highly depended on the park for their survival, 

job opportunities, and fuel wood demand (Deribew, 2019; Mekonnen, 2022). Additionally, the 

biodiversity, natural springs and other attractive natural endowments of NNP are significant 

contributors for the existing tourism activities and development in Arba Minch town and 

surrounding areas. The future degradation in these natural resources considerably affects the 

sustainability of the opportunities for livelihood of local communities, tourism activities, and 

socioeconomic development at large. Empirical studies strongly argued that the ecological 

problems facing biodiversity conservation sites across the globe fundamentally emanated from 

the lack of adequate protection by local communities for their environmental values and 

administrative failure to implement policies (Marchese, 2015; Menbere, 2021). Similarly, in 

study area, the results of LUC analyses and the researcher above 18 years lived experiences show 

that the continued forest and grassland degradation, bush/shrub encroachment over the entire 

landscape, and cultivated land expansion are the mirror of inadequate interventions for resource 

management and weakened enforcement of laws to control illegal economic activities. The 

effectiveness of ecological interventions and legal instruments may be constrained by various 

factors, such as using of the park area as permanent land of living by semi/pastoralists/ (Guji and 

Kore communities), main source of livestock grazing, fodder collection and wood production for 

fuel, furniture, and construction, and lack of political commitment in the local and regional 

governments to protect the park for biodiversity conservation (Mekonnen, 2022;Tsegaye et al., 

2017). Several researchers have also documented similar problems for PAs in Ethiopia (Debebe 
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et al., 2023; Menbere, 2021; Temesgen et al., 2022) and elsewhere (Baidoo et al., 2023). 

Therefore, an integrated and long-term plan is necessary for natural resource management, 

alternative livelihood and energy sources, and relocation of people outside the park by involving 

local communities, government offices, NGOs, and academic institutions to control the predicted 

FLUC in NNP and harness the ecological and socioeconomic advantages sustainably. 

Predicting and understanding future land change has become the key concern for 

conservationists and land use planners because of its advantages in devising effective and 

alternative resource management plans (Waseem et al., 2015). In this study, the integration of 

CA-Markov model with intensity analysis framework provides reliable evidence for informed 

decisions and improved resource management plans. Additionally, quantified and mapped 

information about FLUC of protected areas is vital to improve public awareness and involve all 

stakeholders in discussions and policy-making processes (Nogueira et al., 2014; Verburg et al., 

2006). In this study, although an effective change prediction model (Cunha et al., 2021; Waseem 

et al., 2015), and a three levels change intensity analysis tool (Aldwaik & Pontius, 2012) were 

applied, the prediction process was not free from limitations that generating from the errors and 

drawbacks in the prediction model, statistical tools that were used for data preparation, satellite 

images and land classification algorithm (Cunha et al., 2021; Mathewos et al., 2022; Nogueira et 

al., 2014; Zhang et al., 2021). Additionally, the reliability of findings regarding FLUC can be 

influenced by the prediction capacity of the explanatory that used in change modeling processes 

(Cunha et al., 2021). In this study, seven static explanatory variables were identified initially. 

Among the identified variables, based on their relatively higher prediction performance, distance 

from cultivated land, road, water bodies, and slope of the study area were used for simulating and 

predicting FLUC. However, the socioeconomic variables were not considered due to the absence 

of georeferenced and timely matched data. Therefore, we recommend future studies on this issue 

in this study area to take into account the dynamic environmental and socioeconomic variables. 

 CONCLUSION  

Due to anthropogenic pressures for socioeconomic well-being and natural drivers, NNP has 

been threatened by continued LUC and land degradation. Thus, detailed information about FLUC 

is crucial to understand the characteristics of the change and respond the adverse impacts through 

evidence-based proactive and targeted interventions. This study quantified the intensity of FLUC 

between 2020 and 2060 using the CA-Markov model and Intensity Analysis framework. The 

findings revealed that considerable land transition is anticipated with negative implications for 

biodiversity and ecological services in the coming four decades. Bush/shrubland and cultivated 

land will have a net gain at the expense of forest, woodland, and grasslands. Further, the analyses 

indicated that the predicted intensively targeted losses in forest, woodland, and grassland, and as 

gains in cultivated land and bush/shrubland, mainly attributed to the intensiveness of the drivers 

rather than the areas of the land types. Therefore, interventions, particularly for enhancing forest 

land, woodland, and grasslands, and controlling the expansion of bush/shrubland and cultivated 

land, should be implemented through the active involvement of all stakeholders and integrated 

management approaches. Additionally, the study highlighted the importance of integrating CA-

Markov model with intensity analysis to quantify the underlying characteristics of FLUC and 

generate more pertinent information for informed decision and policy-making. 
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