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ABSTRACT 

The burden of disease from ambient and indoor air pollution is highest in low-income countries, while their resources 

for monitoring air pollutants are the lowest. PM2.5 is the primary indicator of air pollution. Reference monitors of 

PM2.5 are expensive, but there is an increased use of low-cost sensors (LCS). Three LCS, the UCB-PATS+ (PATS), 

Airvisual Pro (IQAV) and Sensirion SPS30 (SPSA) are being used in Arba Minch, Ethiopia, but their quality has not 

yet been evaluated under circumstances common to low-income countries, and the variety of metrics used in 

evaluation studies make comparisons difficult. This study aims to evaluate the three LCS under circumstances 

encountered in Arba Minch, with metrics commonly used and officially prescribed. Measurements were conducted 

with the LCS at 2 ambient and 4 high exposure (kitchen) concentrations, and at four of those locations with the 

gravimetric reference method as well. The quality of the three LCS was evaluated within identical, with reference, 

and between different types, with commonly reported (regression slope and R2) and officially prescribed (Pearson 

correlation, bias, accuracy, expanded uncertainty) metrics. The SPSA has low within variation in both ambient and 

high-exposure situations, meets official requirements compared to the reference, and shows a stable bias across 

different time and concentration levels. The IQAV and PATS within variations are not up to official standards but 

show strong linear associations. The IQAVs as a group, and PATSs individually, meet official reference requirements 

at daily level. Between comparison reveals that all LCS show strong linear associations even at 10-minute average 

level. For SPSA the association is similar across all ranges, and for the others the association is strong when different 

ranges are taken into account. Generally, all LCS are a good alternative for expensive reference methods. The strong 

linear associations suggest the possibility of correcting LCS measurement data based on other studies’ results and 

based on other LCS, across different concentration ranges. Projects with a budget of $600 can already supply 10 

measurement locations. Higher-budget projects can contribute to the quality of low-budget projects when they do not 

only use expensive monitors, but also LCS at the same location. 
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1. INTRODUCTION 

Air pollution is one of the top of factors that adversely affects people’s health (Babatola, 2018; 

Gakidou et al., 2017; Shaddick et al., 2018). An estimated 4.2 and 3.2 million premature deaths 

per year are attributed to ambient (outdoor) and indoor air pollution, respectively (World Health 

Organization, 2021b, 2022). A common proxy for air pollution, and the pollutant with most health 

effects, is particulate matter, specifically particles with a diameter of less than 2.5 µm (PM2.5) 

(World Health Organization, 2021b). The reference method for monitoring PM2.5 is filter-based 

gravimetry. This method typically assesses concentrations on a 24-hour average level (EPA, 2006; 

European Commission, 2010), and is associated with high operating costs (Sousan et al., 2021). 

There are various continuous monitors (monitoring concentrations at hour- or even second level) 

that are recognized as equivalent to the reference method. These are also expensive, as they cost 

$11,500-30,000 per monitor (Mooney et al., 2006). In recent years, there has been an increase in 

the use of low-cost sensors (LCS) (Sousan et al., 2021). This trend is of utmost importance for 

low-income countries, where both the burden of disease is high (World Health Organization, 

2021b, 2022), and the resources for PM2.5 monitoring instruments are low.  

Three PM2.5 LCS (IQAir Airvisual Pro (IQAV), UCB-PATS+ (PATS) and Sensirion SPS30 

(SPSA)) have been used for published (Dingemanse et al., 2022; Dingemanse & Dingemanse-de 

Wit, 2022) and ongoing research projects in Arba Minch. The quality of these LCS have been the 

subject of different studies. For PATS, Pillarisetti et al. (2017) reported an ordinary regression 

result of R2 of 0.90 (slope 1.5) in comparison with the reference method. Also, they reported an 

R2 of 0.90 (slopes 1.7 – 4.8) in comparison with a continuous monitor, and an R2 of 0.96 (slope 

0.92) between two identical PATSs., At a non-smoking residence in the United States, Zamora et 

al. (2020) found an R2 of 0.90 in comparison with a gravimetrically corrected continuous monitor, 

and an R2 of 0.99 between two IQAV units. Under ambient conditions, Feenstra et al. (2019) 

reported an R2 of 0.7 with slopes of 0.76-0.87 for the IQAV in comparison with a continuous 

monitor. Under laboratory conditions, Sousan et al (2021) found Pearson correlations of 0.99 

between SPSA and a gravimetrically corrected continuous monitor, with slopes of 0.7 to 2 

depending on the particle type, and a variation between identical sensors of 5-20%. Also under 

laboratory conditions, Nguyen et al. (2021) found an error of 2.7% for the SPSA in comparison 
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with a continuous monitor at a range of 0-25 µg/m3, and an error of 16-26% between 50-1,000 

µg/m3. Based on ambient field measurements, Falzone et al. (2020) reported expanded 

uncertainties lower than European requirements of 25% for the SPSA. 

Quality evaluations usually include a comparison of identical LCS and/or a comparison with the 

reference method or a continuous monitor. The quality of LCS is evaluated with a variety of 

metrics. Most reported is the R2, with corresponding slope and/or intercept from a regression 

(Karagulian et al., 2019). From a combination of several studies, Karagulian et al. (2019) use an 

R2 of at least 0.75 together with a slope close to 1 to select the best performing LCS. While this 

metric indicates the strength of association between two variables, it is not necessarily the best 

indicator of data quality (Karagulian et al., 2019). Official guidelines for testing the equivalence 

of PM2.5 measurement methods have been made by the Environmental Protection Agency of the 

United States of America (EPA) (EPA, 2006), the National Institute for Occupational Safety and 

health (NIOSH) (NIOSH, 2012), and by the European Commission in the Guide to the 

Demonstration of Equivalence of Ambient Air Monitoring Methods (DEM) (European 

Commission, 2010). For identical instruments, EPA and NIOSH require a Coefficient of Variation 

(CV) of +- 10%, while the DEM requires an in-between sampler uncertainty of maximum 2.5 

µg/m3. For comparison with the reference method, EPA uses the Pearson correlation (r, >=0.97), 

a slope of 1±0.1 and an intercept of ±5 µg/m3. The NIOSH requires an accuracy of 25% at 95% 

confidence level in comparison with the reference method and prescribes correction of the data if 

the absolute bias is >10%. Like NIOSH, the DEM has set the required uncertainty at 25%, but 

prescribes detailed formulas for calculating this uncertainty based on orthogonal regression and 

requires an evaluation of this uncertainty at a concentration level of 30 µg/m3. Data correction is 

prescribed for slope and/or intercept if those are significantly different from 1 or 0, respectively. 

The LCS quality evaluation can be done under various concentration levels. Typical PM2.5 

concentration ranges used for ambient testing are 0-40 µg/m3 (Falzone et al., 2020; Sousan et al., 

2021). Indoor or occupational concentrations can be over 2,000 µg/m3 (Sousan et al., 2021). EPA 

guidelines and the DEM are for ambient monitoring, which can be seen from the slope +- 5 µg/m3, 

in-between uncertainty of 2.5 µg/m3 and evaluation of uncertainty at concentration level of 30 

µg/m3. The requirements of NIOSH are not specific to a concentration level (both in-between 
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sampler comparison and accuracy versus the reference method is set at a relative percentage). 

While a sensor preferably reacts the same under different circumstances, in reality studies find 

different slopes or correction factors for different concentration levels (Falzone et al., 2020; 

Nguyen et al., 2021) and particle types (Sousan et al., 2021). 

Quality evaluation can also be done on different time periods. Both EPA and the DEM require an 

evaluation at 24-hour average level. This corresponds with the short-term 24-hour average air 

quality standard (World Health Organization, 2021a) and matches with the usual time needed to 

get sufficient filter load for the reference method. Continuous monitors, and LCS alike, can report 

concentrations at time periods of 1 second. Studies that evaluate LCS at time levels lower than 24-

hour use continuous monitors calibrated by the gravimetric reference method as ‘reference’ 

(Karagulian et al., 2019), or simply use a continuous monitor as it is (Pillarisetti et al., 2017). 

The circumstances and metrics used in LCS quality evaluations do not yet cover the situation 

encountered in low-income countries. The PATS shows different slopes for different situations 

(Pillarisetti et al., 2017), warranting its own quality evaluation. The IQAV has been validated only 

in high-income countries, where ‘common residential sources’ do not include cooking on biomass 

or coffee ceremony, old cars, or open waste burning. For high concentrations, the SPSA is 

evaluated up to 1,200 µg/m3 PM2.5 under laboratory circumstances (Nguyen et al., 2021; Sousan 

et al., 2021). However, concentration levels in indoor air pollution field circumstances in low-

income countries can be much higher than 1,200 µg/m3 (Dingemanse et al., 2022). For the SPSA, 

under ambient concentrations, different results for two different locations in Belgium are reached 

(Falzone et al., 2020), and again those are not the ambient circumstances encountered in Ethiopia. 

Finally, the evaluations of LCS are conducted with a variety of metrics, time averaging periods 

and concentration ranges, which makes comparison hard. In this study, I present an evaluation of 

those LCS, based on data gathered in different ongoing research projects in Arba Minch, Ethiopia, 

with an extensive use of available metrics, time periods and concentration ranges. 

The main objective of this study is to evaluate the quality of the IQAir Airvisual Pro, UCB-PATS+, 

and Sensirion SPS30 under field circumstances common to low-income countries, based on data 
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gathered in ongoing research projects in Arba Minch, Ethiopia. The evaluation consists of three 

parts:   

- A comparison of identical LCS (within comparison); 

- A comparison of LCS with the gravimetric reference method (reference comparison); 

- A comparison amongst different LCS (between comparison). 

2. MATERIALS AND METHODS 

2.1 Study area 

Arba Minch town is the administrative center of Gamo Zone, which is one of 14 Zones in the 

Southern Nations, Nationalities and People’s Regional State (SNNPR) of Ethiopia. Three LCS are 

used in (ongoing) research projects in Arba Minch, Ethiopia. Students have conducted 

measurements in indoor and ambient situations (Dingemanse et al., 2022; Dingemanse & 

Dingemanse-de Wit, 2022). At different locations, parallel measurements with multiple 

instruments have been conducted for quality evaluations. For this study, data from six locations 

was used: two ambient locations and four restaurant / kitchen locations. The two ambient locations 

represented low and medium ambient concentrations (in front of a residence in a low-traffic area, 

and at a hotel compound close to the road in the city center). The four kitchen locations represented 

high concentrations encountered owing to cooking or coffee preparation with biomass fuel. One 

location was in a small local restaurant, in a room with coffee preparation and next to a kitchen 

with biomass fuel cooking. Another location was in the kitchen of a small restaurant with biomass 

fuel cooking. The two final locations were both in a big kitchen with multiple (>5) cooking fires. 

While in the same kitchen, the two locations considered different. This is because the instruments 

were placed at separate locations in the kitchen, and cooking fires closest to those locations were 

used at different moments, resulting in different concentration patterns. Table 1 gives an overview 

of the six locations and the instruments used at those locations. 
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Table 1. Measurement locations, with their LCS and number of reference measurements (nref). IQAV, PATS and SPSA 

LCS are identified as respectively IqX, PaX and SpX, in which x denotes the instrument’s number. 

Location ID Air pollution sources LCS nref 

Residence A1 Neighborhood Sp1, Sp2, Sp4, Iq1  

Hotel A2 Traffic, neighborhood Sp3, Sp5, Iq2 3 

Local 

restaurant 

K1 Cooking fires, coffee 

preparation 

Sp2, Iq5  

Kitchen 1 K2 Cooking fires Sp4, Iq3 3  

Kitchen 2a K3 Cooking fires Sp6-7, Iq3-5, Pa1, Pa3-4 8  

Kitchen 2b K4 Cooking fires Sp8-9, Iq6-8, Pa2, Pa5-6 4 

2.2 Materials 

2.2.1 LCS 

This study evaluated three LCS: the UCB-PATS+ (PATS), the Airvisual Pro (IQAV) and the 

Sensirion SPS30 (SPSA). Individual LCS are coded as Pa1-Pa6, Iq1-Iq8 and Sp1-Sp5, for 6 

PATSs, 8 IQAVs and 5 SPSAs, respectively. All three LCS types estimate the PM2.5 

concentration based on scattering of IR light (Pillarisetti et al., 2017; Sousan et al., 2021; Zamora 

et al., 2020). The PATS and IQAV are commercially available ‘plug-and-play’-instruments, 

meaning that the particle sensor is built into a case with other components for data storage and 

usability. The SPSA is only a particle sensor that needs to be connected to either a computer or a 

microprocessor together with other components for data storage and access. For this study, data 

collection with the SPSA was done by connecting it to an Arduino Mega microprocessor, together 

with a micro-SD module, a DS3231 real-time clock and a power bank. The PATS is designed for 

personal sampling and (high) indoor concentrations, but not for low ambient concentrations (lower 

detection limit is 10 µg/m3). In this study, the PATS was not used at ambient locations A1 and A2. 

The IQAV is used both in ambient and indoor situations but is not meant for very high 

concentrations (>5,000 µg/m3), since the highest reported value of the IQAV is set to 4,488 µg/m3. 

On the SPS30, no such minimum or maximum values are set (the sensor needs to be programmed 

by the user), but the manufacturer specifies a range up to 1,000 µg/m3. Table 2 gives an overview 

of the most important characteristics of the three LCS.  
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Table 2. Specifications for the LCS evaluated in this study 

Parameter PATS IQAV SPSA 

Name UCB-PATS+ AirVisual Pro Sensirion SPS30 

Range 10-50,0000 0-4,488 0-1,000 

Logging interval >2s >10s >1s 

Cost ($) 500 269 30a 

Internal storage Yes Yes No a 

Internal battery +36 hours 2-4 hours No a 

a. The SPSA needs additional costs for battery and data storage. The total set-up as used in this 

study has a cost of approximately $60. 

2.2.2 Reference instrument 

Reference measurement methods for PM2.5 are based on gravimetry. As reference instrument, the 

Ultrasonic Personal Aerosol Sampler (UPAS) was used, as this instrument was the only available 

gravimetric instrument in Arba Minch, Ethiopia. The UPAS is a gravimetric instrument designed 

for measuring medium to high concentrations. . A filter is loaded with particles with a flowrate of 

1 l/min. A cyclone ensures that only particles with a diameter smaller than 2.5 µm enter the inlet. 

Over ranges of 20-1,000 µg/m3, Volckens et al. (2017) found strong correlations with the EPA 

federal reference method. Afshar-Mohajer et al. (2021, p. 131) found that “the UPAS may be a 

suitable alternative for [Respiratory Dust] mass sampling” for ranges of 100-500 µg/m3 in 

occupational settings. For gravimetric analysis of the filters, a Mettler AE240 Dual Range balance 

was used, having a readability of 10 µg and a reproducibility of ±20 µg (IET, n.d.).  

2.3 Methods 

2.3.1 LCS measurements 

All instruments were fixed at 1.5- 2 meters high and connected to a power source. The 

measurement frequency of the LCS ranged from 10 seconds to 3 minutes. For this study, all data 

was averaged to 10-minute time periods. Figures A1 and A2 in the Annex show the data 

availability for all LCS at all locations, as well as the concentration ranges encountered at those 

locations. At location A2, power was switched off during nighttime. As a result, there was 

approximately 50% data loss for Iq2 at location A2. At locations A1 and A2 (as reported by the 
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SPSA), daily averages ranged between 3-30 and 10-50 µg/m3. 99%-percentile of 10-minute 

averages were 70 and 107 µg/m3, respectively. At locations K1 through K4, hourly averages 

ranged from 2 to higher than 10,000 µg/m3 for the SPSA. 99% percentile 10-minute averages were 

30,000, 13,000, 3,000 and 1,300 µg/m3, respectively.  

2.3.2 Reference measurements 

Measurements with the reference instrument were conducted 3 times 48 hours at location A2, and 

24-hours (or up to a full filter) 3 times at locations K2, 4 times at K3 (2 instrument) and 4 times at 

K4. Table 3 shows an overview of the reference measurements. 

Table 3. Details of reference measurements conducted at locations A2, K2, K3 and K4, and the LCS at those locations. 

No. Loc. Start Duration 

(hour) 

Filter load 

(µg) 

Parallel LCS 

1 A2 a ‘21-10-01 12:19 48 90 Iq1, Sp3, Sp5 

2  ‘21-10-03 12:35 48.3 110 

3  ‘21-10-06 17:54 47.4 130 

4 K2 ‘21-10-01 11:38 20 1,460 Iq3, Sp4 

5  ‘21-10-03 12:55 16.4 970 

6  ‘21-10-04 09:56 20.6 1,390 

7 K3 ‘22-06-08 15:15 21.3 340 Sp6, Sp7, 

Iq3, Iq4, Iq5, 

Pa1, Pa3, Pa4 

8  ‘22-06-09 13:02 22.1 210 

9  ‘22-06-13 10:40 23.7 1,130 

10  ‘22-06-14 11:13 23.6 430 

11  ‘22-06-08 15:12 21.2 350 

12  ‘22-06-09 13:03 22.1 240 

13  ‘22-06-13 10:46 23.6 1,130 

14  ‘22-06-14 11:14 23.6 430 

15 K4 ‘22-06-08 15:10 21.4 500 Sp8, Sp9, 

Iq6, Iq7, Iq8, 

Pa2, Pa5, Pa6 

16  ‘22-06-09 13:22 21.9 320 

17  ‘22-06-13 10:59 23.5 610 

18  ‘22-06-14 11:05 24.0 560 

a. Only three filter comparisons are available at A2, and these should be seen as indicative, as the 

instrument in combination with the available analytical scale is not designed for such low 

concentrations. Even with 48-hour use, the filter load is only 90-130 µg, which with a repeatability 

of 20 µg gives an uncertainty of 15-22% for only the gravimetric analysis. 
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2.4 Data corrections 

Between ’21-10-05 and ’22-03-05 Sp1 at location A reported the time with a 1-to-5-hour delay. 

This data was shifted based on visual inspection of the daily morning and afternoon concentration 

peaks. 

The DEM allows for removal of up to 2.5% percent of outliers based on Grubb’s outlier test at 

99% level (European Commission, 2010). This outlier removal was done for Sp3 and Sp5 at 

location A2. 

Only for purpose of the comparison with the reference method at location A2, the missing data of 

Iq1 was filled by data from Sp3. The slope resulting from orthogonal regression techniques as 

prescribed in the DEM, based on available data pairs between Sp3 and Iq1, was used to predict the 

missing data of Iq1 missing data based on data of Sp3. 

At locations K3 and K4, there was data loss during the reference measurements. LCS results with 

more than 15% data loss during measurements with the reference method are not used in the 

reference comparison.  

2.5 Quality evaluation 

2.5.1 Within comparison 

To compare identical samplers, the linear association was quantified with the slope (S) resulting 

from Ordinary Least Squares (OLS) regression without intercept, and the corresponding 

coefficient of determination (R2). Furthermore, the coefficient of variation (CV) and in-between 

sampler uncertainty (ubs) were calculated. 

The Coefficient of Variation (CV) was calculated with equation 1 (Sousan et al., 2016): 

𝐶𝑉 =
1

𝑛
∑

𝜎𝑖

µ𝑖
         (1) 

Where, σi is the standard deviation and µi is the mean of measurements of identical LCS during 

time period i, and n is the number of time periods. 
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The in-between sampler uncertainty (ubs) was calculated with equation 2 (European 

Commission, 2010): 

𝑢𝑏𝑠 = √
∑(𝑦𝑖,1−𝑦𝑖,2)2

2𝑛
         (2) 

Where, yi,1 and yi,2 are the results of parallel measurements for time period i, and n is the number 

of time periods. 

2.5.2 Reference comparison 

Pearson correlation coefficient (r), slope (S) and corresponding R2 based on OLS regression 

without intercept, accuracy, bias and expanded uncertainty were computed to for the comparison 

with the reference instrument.  

EPA has requirements concerning slope and intercept. In all situations, the regression of slope 

without intercept yielded either a higher R2 than the R2 for regression with intercept, or a very high 

R2 (>=0.97). Therefore, for this study only results for regressions without intercept were included. 

The bias (B) was calculated with equation 3 (NIOSH, 2012): 

𝐵 =
1

𝑛
∑(

𝑥𝑖

𝑦𝑖
− 1)        (3) 

Where, xi is the concentration of the LCS and yi the concentration of the reference instrument for 

time period i, and n is the number of time periods. 

The accuracy (Ac) is “the theoretical maximum error of the measurement, expressed as the 

proportion or percentage of the amount being measured, without regard for the direction of the 

error, which is achieved with 0.95 probability” (NIOSH, 2012, p. 3). The accuracy should be lower 

than 25%. The accuracy was calculated as the upper value of the confidence interval at 90% of the 

relative difference between the LCS measurement reference measurement. For this, all 
𝑥𝑖

𝑦𝑖
 values 

were calculated, and the confidence interval at 90% was calculated based on these values. 

If |B| is higher than 10%, NIOSH prescribes to correct the bias in the data. Equation 4 was used 

for calculating corrected data xnew based on the old data xold. 
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𝑥𝑛𝑒𝑤 =
𝑥𝑜𝑙𝑑

𝐵+1
          (4) 

The names Ac_BC and Ac_AC were used to distinguish between accuracy before and after correction, 

respectively.  

The expanded uncertainty (WCM) of the LCS versus the reference instrument is calculated at a 

level of 30 µg/m3, and should be maximum 25% (European Commission, 2010). A linear 

relationship between the LCS and reference data is assumed. For establishing this linear 

relationship, algorithms of orthogonal regression should be used. If slopes are significantly 

different from 1, and/or the intercept is significantly different from 0, the DEM prescribes to 

correct the data for this slope and/or intercept. Formulas are extensively shown in the DEM (DEM 

section 9.5 and DEM Appendix B). To distinguish between WCM before and after correction, the 

names WCM_BC and WCM_AC were used, respectively. In all data comparisons conducted in this 

study, the slope without intercept was significant. For that reason, all reported WCM_AC were based 

on correction for slope only. 

2.5.3 Between comparison 

For comparison of different LCS, accuracy and expanded uncertainty were used to quantify the 

degree of equivalence. WCM is used at a level of 30 µg/m3 with averages of 24-hour time-periods 

(European Commission, 2010). Therefore, this metric was used for comparing 24-hour averaged 

data of LCS at ambient locations (A1 and A2). The accuracy was used as metric for all comparisons 

at the high-exposure locations (K1-K4) and for all comparisons of averages over time periods 

smaller than 24 hours. Additionally, for comparability with other studies, R2 for OLS regression 

without intercept has been calculated. 

2.5.4 Quality evaluation summary 

Table 4 gives a summary of the quality evaluation metrics used in this study. 
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Table 4. Summary of quality metrics used for evaluating LCS measurement results. 

Evaluation Metric Locations Reference Score / requirement 

Within LCS S & R2 All Often used R2>0.75 at least; R2>0.9 ‘very 

good’ 

 CV All EPA, NIOSH <10% 

 ubs A1, A2 DEM <2.5 µg/m3 

Reference r All EPA >0.97 

 S All EPA 1±0.1 

 R2 All Often used R2>0.75 at least; R2>0.9 ‘very 

good’ 

 B & Ac All NIOSH Correction if |B|>10%, 

Ac<25% 

 WCM A2 DEM Correction for slope, 

WCM<25% 

Between LCS S & R2 

All Often used 

R2>0.75 at least; R2>0.9 ‘very 

good’ 

WCM A1, A2 a Correction for slope, 

WCM<25% 

B & Ac All a Correction for B, Ac<25% 

a. There is no official reference for quality metrics of LCS inter-comparison, because technically 

even if there is big difference, it is not known which of the LCS is right. Nevertheless, the WCM 

and accuracy metrics of EGDE and NIOSH are used to express the agreement between two 

different LCS. 

2.6 Data processing software 

All data processing and visualization was done with Python 3.8 (Python Core Team, 2020), with 

the packages Numpy (Harris et al., 2020), Pandas (The pandas development team, 2020), 

Matplotlib (Hunter, 2007) and Scipy (Virtanen et al., 2020). All data used and code created in this 

study is made available on the OSF repository, https://doi.org/10.17605/OSF.IO/YTV79. 

3. RESULTS 

3.1 Within comparison 

Figure 1 shows the slopes of regressions without intercept and corresponding R2 values for one 

LCS versus one or more identical LCS.  
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Figure 1. Slopes, annotated with corresponding R2s, between identical LCS at all measurement locations. For 

locations with three identical LCS, two slopes are shown (instrument 1 vs 2 and instrument 1 vs 3). 

Slopes of the SPSA were close to 1, ranging from 0.93 to 1.10. This implies that the different 

SPSAs showed a similar signal. Identical IQAVs showed higher variation (slopes 1.10-1.31). The 

PATS at location K4 showed also relatively small slopes (0.93-1.08), but at K3 variation between 

identical PATSs was high (slopes 0.87-2.05). R2s were generally very good, except for the SPSA 

at location K4 (0.87) and one PATS at K3 (0.86). 

Similar results can be seen from the CV and ubs. Figure 2 shows the CV for all locations, and the 

ubs for only ambient locations.  

 

Figure 2. Coefficient of variation (CV) and in-between sampler uncertainty (ubs) for the LCS at different locations. 
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At all locations, the CV of the SPSA was lower than the required 10%.At the ambient locations, 

the ubs was lower than the required 2.5 µg/m3. The IQAV at K4 showed higher variation (CV 16%) 

while the PATS showed high variation at both kitchen locations (22 and 21%). This implies that 

those individual sensors might require separate calibrations. 

3.2 Reference comparison 

Figure 3 shows all filter measurement results with averages of parallel LCS measurements during 

the same time period. 

Figure 3. PM2.5 measurement results for all 18 reference measurements and parallel LCS measurements. With 

multiple identical LCS, results are shown with markers, and average results are shown with bar. 

Filter measurement results at location A2 ranged from 31-46 µg/m3. Filter measurements at the 

kitchen locations ranged from 158 to 1,220 µg/m3. Table 5 shows the quality evaluation for 

individual instruments and groups of identical instruments at location A2.  
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Table 5. For location A2, the number of data pairs (n), and results for quality metrics in the comparison of LCS with 

the reference method. 

LCS n r S, R2 Acc_BC B Acc_AC Wcm_BC Wcm_AC 

Sp3 3 0.93 2, 0.99 60 -

0.49 

21 542 38 

Sp5 3 1.00 1.9, 

0.98 

59 -

0.45 

24 614 42 

Sp3,5 6 0.70 1.9, 

0.98 

53 -

0.47 

16 567 27 

Iq1 3 0.99 1.7, 

0.99 

52 -

0.38 

22 306 37 

 

Pearson correlations between individual LCS and the reference method were good (>0.93), but 

were lower when all SPSA measurements were combined (0.7). Interestingly, all R2 values were 

very high (>0.98). The slopes and biases showed the need for corrections (LCS results were lower 

than reference results), but after bias correction, all LCS reached the required 25% accuracy (16-

24%). The best accuracy was reached when all data of the SPSA were combined. This combination 

was also the only dataset that came close to the requirement of WCM (25%). 

Table 6 shows the quality evaluation at locations K2-K4. Results are shown for individual LCS, 

combinations of identical LCS at the same locations, and combinations of identical LCS across all 

kitchen locations. 

Table 6. The number of data pairs (n), and results for quality metrics in the comparison of LCS with the reference 

method. 

Location LCS n r S, R2 Ac_BC Bias Ac_AC 

K2 Sp4 3 0.99 0.9, 1 22 0.15 5 

 Iq3 3 0.69 4, 0.99 79 -0.75 14 

K3 Sp6 8 1.00 1.1, 1 18 -0.15 7 

 Sp7 6 1.00 1, 1 10 -0.07  

 Sp6,7 14 1.00 1.1, 1 14 -0.12 7 

 Iq3 8 0.99 2.6, 0.96 59 -0.53 22 

 Iq4 8 0.99 2.4, 0.97 55 -0.50 19 

 Iq5 8 0.99 2.1, 0.97 51 -0.45 19 

 Iq3-5 24 0.97 2.3, 0.96 52 -0.49 17 

 Pa1 8 0.99 2, 0.99 50 -0.47 12 



Johannes Dirk /EJWST. Volume:4:33-61 /2021 (ISSN: 2220 – 7643) 

  48 

 

Location LCS n r S, R2 Ac_BC Bias Ac_AC 

 Pa3 8 1.00 1.1, 0.98 44 -0.32 30 

 Pa4 8 1.00 2.2, 1 57 -0.56 6 

 Pa1,3,4 24 0.88 1.5, 0.9 50 -0.45 26 

K4 Sp8 3 0.93 1.2, 0.99 34 -0.19 15 

 Sp9 1      

 Sp8,9 4 0.90 1.2, 0.99 28 -0.14 20 

 Pa2 4 0.96 1.8, 1 50 -0.45 11 

 Pa5 4 0.96 2.2, 1 59 -0.53 15 

 Pa6 4 0.73 1.7, 0.98 55 -0.39 30 

 Pa2,5,6 12 0.69 1.9, 0.98 51 -0.46 19 

K2-4 Sp6-9 21 0.99 1, 0.98 15 -0.08  

K2,4 Iq3-5 27 0.91 2.7, 0.92 56 -0.52 25 

K3,4 Pa1-6 36 0.87 1.6, 0.92 49 -0.45 22 

 

Pearson correlations were good (>0.9) in all cases, except for Iq3 at K2 (0.69), all PATSs combined 

at K3 (0.88), Pa6 at K4 (0.69) and all PATSs of all locations (0.87). The EPA requirement (>0.97) 

was met by multiple LCS, and most notably by the combination of all SPSA across all kitchens. 

This implies that the relationship between the SPSA and the reference was not location dependent. 

For SPSA, slopes were generally close to 1 (0.9-1.2 for individual, and 1.0 for all combined) with 

corresponding R2s >0.98. IQAVs showed slopes of 2-4 while the PATSs showed slopes of 1.1-

2.2. When corrected for the bias, almost all LCS reached the required accuracy of 25%. The 

required accuracy was not reached by Pa3 (30%), the combination of PATSs at K3 (26%) and Pa6 

(30%). All SPSAs combined did not require bias correction because |B|<10% (-8%).  

Generally, all LCS had a good to very good correlation with the gravimetric reference method, and 

with corrections requirements could be met. The SPSA needed the least correction, while the 

PATSs needed correction on an individual level. In other words, similar SPSA results under 

different circumstances can be readily compared, while PATS results need to be handled 

individually. Interestingly, the quality evaluation showed that the IQAV with a correction factor 

can give trustworthy results at a daily basis even if the IQAV is not designed for the high 

circumstances encountered in K2-K4 (concentrations at raw-data level often exceeded the 

maximum of 4,488 µg/m3). 
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3.3 Between comparison 

3.3.1 Ambient locations 

Figure 4 shows the comparison of daily averaged concentrations between different LCS at the 

ambient locations, expressed in WCM_AC, and R2 of OLS regression without intercept. 

 

Figure 4. Comparison between individual LCS at locations A1 (left panel) and location A2 (middle panel), and all 

available data pairs between any IQAV and SPSA at either location (right panel). Wcm_AC and R2 are in each panel 

shown respectively top right and bottom left 

With R2s of 0.96 or higher, the linear association between the SPSAs and IQAVs was strong. The 

comparison also met the required WCM_AC of 25% both for individual LCS, and all data pairs of 

all LCS from the two locations combined (WCM_AC=15%).   

The association was also strong at lower time-averaging levels. Figure 5 shows the biases and 

accuracies for individual SPSAs and all SPSAs combined as X versus one IQAV as Y. 



Johannes Dirk /EJWST. Volume:4:33-61 /2021 (ISSN: 2220 – 7643) 

  50 

 

 

Figure 5. Biases (left panel) and Ac_AC (right panel), for individual SPSA and all SPSA combined compared to an 

IQAV, at locations A1 and A2. Results are shown for comparisons at four different time averaging periods 

The negative bias of SPSA versus IQAV implies that the SPSA was measuring lower than the 

IQAV (see equation 3). Biases ranged from 10-25%. Corrected for this bias, accuracies ranged 

from 5.3 to 26%. This is far lower than up to slightly over the required 25%. Furthermore, the bias 

for all SPSA versus IQAV data pairs remained stable across the different time averages (between 

10 and 15%), suggesting a stable relation between the SPSAs and IQAVs. In other words, the 

SPSA and IQAV units can be used interchangeably, and results can be compared across different 

ambient concentration ranges and time averaging periods, especially if data is corrected for the 

bias of 10-15%. 

3.3.2 Kitchen locations 

Figure 6 shows accuracies and R2s for all individual LCS compared amongst each other, for daily 

averaged time periods. 
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Figure 6. Comparison of daily averaged data of individual LCS at locations K3 (left panel) and location K4 (middle 

panel), and all available data pairs between any two different LCS at any kitchen location (right panel). Ac_AC and R2 

are in each panel shown respectively top right and bottom left 

Linear associations between individual LCS were very high. The R2s between PATSs and SPSAs 

were >0.97, and between IQAVs and SPSAs were >0.96. Only for Pa3 in comparison with IQAVs 

the R2s were lower than 0.9 (0.85-0.87). The associations were significantly lower when all data 

from identical LCS, from any of the kitchen locations, were combined (R2s of 0.64-0.85). 

Similarly, on an individual level some instruments showed Ac_AC<25%, but variation for all paired 

combinations was higher (32-48%). This indicates that different LCS cannot be interchanged with 

an identical correction across different locations. 

The fact that SPSA and PATS were not interchangeable without individual attention, is most likely 

related to the fact that the PATS sensors individually fell short as well (accuracies between Pa3 

and the other two PATSs >25%). The problems of the IQAV are related to the fact that the 

maximum reported value is set to 4,488 µg/m3 (while PATS and the SPSA reported raw values of 

over 50,000 µg/m3). 

The accuracies were worse for a 10-minute averaging level than for a daily averaging level. The 

underlying reason for this is that biases can be different at different concentration ranges. 

Concentration variations are more apparent at small time-averaging levels. Figure 7 shows the 

Ac_AC for all LCS versus one SPSA at the same location, for different concentration ranges, at a 

10-minute averaging level.  
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Figure 7. Comparison of daily averaged data of individual LCS versus Sp6 or Sp8 at locations K3 (left panel) and 

location K4 (middle panel), and all available data pairs between one SPSA and any other LCS type at any kitchen 

location (right panel). Ac_AC is shown for different concentration ranges as measured by the SPSA. If Ac_AC for LCSi 

vs LCSj is different from LCSj vs LCSi, the lowest of the two is taken 

As expected, when taking all 10-minute averaged data, none of the accuracies of individual LCS 

versus one SPSA were lower than 25% (29-56%) except for the SPSA itself (3.1-9.7%). However, 

when looking at specific concentration ranges, there were multiple accuracies lower than 25%. 

Even when combining all data-pairs across all kitchens, accuracies lower than 25% could be 

reached for some ranges. This was the case between 0 and 500 µg/m3 for the IQAV, and between 

500 and 2,000 µg/m3 for the PATS. 

These accuracies could be low because each individual dataset was corrected for an individual 

bias. Figure 8 shows all biases of individual LCS versus an SPSA at the same location in locations 

K3 and K4. 

 

Figure 8. Biases of 10-minute averaged measurement results of individual LCS versus one SPSA, across different concentration ranges. Rectangular 

bars show the range of the individual biases. From equation 3 it follows that bias B=1 between i and j equals B=-0.5 between 

j and i. Axes are scaled such that the positive bias of LCSi vs LCSj (LCSi/LCSj-1) is equally sized to its corresponding 

negative bias (i.e. the positive bias of LCSj/LCSi-1) 
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The SPSA sensor compared to an identical sensor had a low bias across all concentration ranges. 

For the IQAV, the bias versus the SPSA sensor differed across ranges. It was close to zero at 

concentrations of 50-250 µg/m3, but it increased negatively (measuring increasingly lower than 

the SPSA) with higher concentrations. The spread in bias for different IQAVs was small for 

concentration ranges up to 1,000 µg/m3.That is to say, one correction factor can be used for all 

identical IQAV. The increasing underestimation with increasing concentrations is because of the 

IQAV reporting maximum 4,488 µg/m3. Above the 10-minute averaged 1,000 µg/m3, at raw-data 

level there are increasingly concentrations >4,488 µg/m3, which by the IQAV are simply reported 

as 4,488 µg/m3, leading to an increasing underestimation.  

For the PATS, the spread of bias was relatively small for concentrations of 50-2,000 µg/m3. For 

concentrations of 250-2,500 µg/m3, the bias was in the same order of magnitude. At concentrations 

below 50 as well as above 2,000 µg/m3, the spread in biases was higher. This means that identical 

PATS require individual attention in those concentration ranges. The overestimation versus the 

SPSA below 50 µg/m3 is due to the PATS reporting minimum 10 µg/m3, resulting in the inverse 

of what for the IQAV happens for high concentrations. 

4. DISCUSSION 

4.1 LCS under ambient conditions 

The evaluation of LCS compared to the reference method under ambient conditions (n=3) was 

limited in comparison with other studies (Sousan et al. (2021) n=8, Falzone et al. (2020) n=24, or 

gravimetrically corrected continuous monitors used by Feenstra et al. (2019) and Zamora et al. 

(2020)). This study found high R2s versus the reference, but the SPSA and IQAV underreported 

concentrations with slopes of respectively 2 and 1.6. The underreporting of the SPSA is also found 

by Sousan et al. (2021) for salt particles (slope 2.0). It is also found by Falzone et al. (2020) in the 

field (1.35-1.38). For the IQAV, however, Feenstra et al. (2019) found the IQAV measuring higher 

than a reference concentration, and Zamora et al. (2020) found it measuring close to a reference 

concentration (bias of 0.04). The difference might be due to circumstances in this study (biomass 

burning on the streets and in neighborhoods as a prominent source) that are different from field 

circumstances in studies conducted in high-income countries. The difference might also be due to 
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the uncertainty of the reference method used in this study for ambient concentrations (see Table 3 

note a). Additional comparisons with reference instruments under ambient conditions common to 

low-income countries are needed to gain more insight in this. This study did however show a very 

low variation within SPSA (much like Sousan et al. (2021) for salt particles), as well as low 

difference between SPSA and IQAV across different time averaging levels (Ac_AC<25%). The low 

within and between variation shown in this and other studies can be combined with other studies’ 

promising findings in comparison with reference instruments. These low variations point to the 

usability of the LCS interchangeably under ambient circumstances. 

4.2 LCS under high-exposure conditions 

Perhaps lacking in ambient circumstances, this study on the other hand included concentration 

levels not encountered in other evaluation studies. 10-minute averaged concentrations in this study 

as reported by the LCS were >10,000 µg/m3, while other evaluations of LCS under non-ambient 

conditions only went up to 1,200 µg/m3 PM2.5 (Sousan et al., 2021). The quality of the LCS under 

circumstances in this study was similar to the quality level found in other studies. For SPSAs 

compared to a reference method, Nguyen et al. (2021) found a standard deviation (SD) of 16.6-

26% (here 1-24%) while Sousan et al. (2021) reported r=0.99 (here as well), but diversity in slopes 

(here: close to 1). Within SPSAs, this study’s CV is similar to Sousan et al. (2021) for salt particles, 

or, translated into absolute SD (up to 22 µg), similar to Nguyen et al. (2021) (26 µg). For the 

PATS, this study’s R2 >0.92 with a common slope of 1.6 is similar to that reported by Pillarisetti 

et al. (2017) (R2 0.9, slope 1.5). The variation within PATS found in this study is not up to NIOSH 

standards (CV>10%), but linear association is similar to that reported by Pillarisetti et al. (2017) 

(R2 0.92). 

The IQAV was altogether not evaluated under high circumstances by other studies. Even despite 

the higher reporting limit, this study revealed a usability on a daily level (Ac_AC <25%).  

4.3 LCS between comparison 

Quality evaluations between LCS are rare. That is understandable from a ‘true quality’ evaluation 

point of view: when comparing LCS, it is not known which of the LCS gives the true value. 

Nonetheless, the comparison of measurement results from different LCS is informative. In the case 
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of a strong association (preferably the same over different instruments and concentration ranges), 

findings for one LCS can be extrapolated to the other. The low variance within, as well as the low 

and stable bias compared to the reference across different ranges for the SPSA are especially 

promising results. These results suggest that an instrument that needs to get more individual 

attention (such as the PATS), in the absence of an (expensive) reference method can be calibrated 

with an SPSA. Similarly, while the IQAV is not designed for high concentrations as in this study, 

with correction the IQAV can give trustworthy results on a daily level (in comparison with SPSA 

R2s>0.96).Below 1,000 µg/m3, the IQAV can even be reliable at a 10-minute averaged level. 

6. CONCLUSIONS AND RECOMMENDATIONS 

Three low-cost PM2.5 sensors were compared within identical sensors, with a reference method, 

and between each other in Arba Minch, Ethiopia, under ambient and high-exposure circumstances. 

Strong linear associations (R2 mostly >0.9) were witnessed at both ambient and kitchen locations. 

This was the case across different time periods and across different concentration ranges. Under 

ambient situations, within SPSAs official standards were met (CV<10%, ubs<2.5 µg). After bias 

correction, both the IQAV and the SPSA met standards for accuracy (Ac_AC<25%). When using 

these LCS in high-exposure situations, the IQAV at daily level needs a correction for a bias of -

50%. It needs a similar correction at 10-minute averaging levels up to concentrations of 200 µg/m3. 

At higher concentration levels, the required accuracies can be obtained by range-wise correction 

based on an SPSA that measures at the same location. When using the PATS, individual sensors 

need individual attention, but in comparison with the reference method or even by correcting with 

an SPSA from the same location can be upgraded to required accuracy levels. The comparability 

within SPSAs implies that findings under one circumstance, albeit distinguishing between ambient 

and prominently biomass-burning situations, can be applied in other circumstances.   

This study shows that, when distinguishing ambient and predominantly high-exposure biomass 

fuel situations, LCS can be used interchangeably: either within one project or for the purpose of 

combining results from multiple studies in which different LCS are used. Of the three evaluated 

LCS, the SPSA seems to be the most flexible choice in an environment where both ambient and 

high-exposure situations are researched. If budget is available for quality evaluations with a 
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reference instrument, more attention to ambient situations in low-income countries is 

recommended, to include situations such as busy streets and open waste burning in bigger cities. 

With a limited budget it is recommended to opt for a multitude of LCS rather than one or two 

expensive monitors.  
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ANNEX 

 
Figure A1. PM2.5 concentrations as reported by all LCS at locations A1, A2, K1 and K2, annotated with the total time 

period (N, in days (dy) or hours (hr)), and the percentage of available 10-minute averages (A) within that time period. 
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Figure A2. PM2.5 concentrations as reported by all LCS at locations K3 and K4, annotated with the total time period 

(N, hours (hr)), and the percentage of available 10-minute averages (A) within that time period.   


