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ABSTRACT 

Many hydrological models have been developed to simulate watershed hydrology. However, identifying the most 

cost-effective and efficient hydrological models for a specific watershed with reasonable certainty becomes difficult. 

The purpose of this study was to compare the stream flow prediction efficiency of the HEC-HMS and SWAT models, 

as well as the associated uncertainty, in the Bilate and Gidabo watersheds. Model-sensitive parameters being 

identified, they were calibrated and validated. The parameter uncertainties were analyzed using Markov Chain Monte 

Carlo (MCMC) for HEC-HMS and Sequential Uncertainty Fitting version two (SUF-2) for SWAT. In the case of the 

HEC-HMS model, the results showed that constant loss rate (CR) was the most sensitive parameter, followed by lag 

time (LT) for both watersheds. SWAT detected ALPHA_BF in the Bilate Watershed and CN_2 in the Gidabo 

Watershed as the most sensitive parameters. Overall, both models could adequately simulate the hydrology of both 

watersheds. Despite their similar modeling capabilities, a comparison analysis revealed that the HEC-HMS model 

outperformed the SWAT model in simulating streamflow in both watersheds. The findings of this study can help 

potential model users make risk-informed decisions by selecting a representative model and quantifying associated 

uncertainty in the modeling field. 
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1. INTRODUCTION 

Many hydrological models had been developed and were accessible to water resources studies, 

such as water resources management, flood control, land planning, water quality, and climate 

change studies (Wu & Chen, 2015). The models were used to analyze the quantity of stream flow, 

reservoir system operation, surface and groundwater use management, flood forecasting, ecology, 

and a range of water management practices (Wurbs, 1998). According to a review of literature, the 

most commonly used hydrological models in Ethiopia were Hydrologiska Byran's 

Vattenbalansavdelning (HBV), Hydrologic Engineering Center's Hydrologic Modeling System 

(HEC-HMS), Soil and Water Assessment Tool (SWAT), Hydrological Simulation Program-

Fortran (HSPF), and MIKE SHE. However, the ranges of applications of the models were different 

since the assumptions involved in each model varied, and catchments were heterogeneous. 

Additionally, many models required data unavailable in the watersheds, especially in developing 

countries (Sivapalan et al., 2003). As a result, potential model users increasingly found it 

challenging to determine the best, most cost-effective, and most efficient hydrological models to 

produce high-quality results.  

The hydrological model selection was based on knowledge of modeling method, data quality and 

availability, model performance, and applicability. Earlier studies conducted around the world 

indicated that one model might represent the hydrological/physical process better than the other. 

The performance of each model varied from watershed to watershed (Abebe, 2017; Abyot, 2008; 

Aliye et al., 2020; Dhami & Pandey, 2013; Golmohammadi et al., 2014; Khoi, 2016). Therefore, 

earlier studies suggested that further studies needed to reach a sound conclusion about the 

superiority of one model over the other. 

HEC-HMS and SWAT models had been extensively used in different parts of the world. However, 

hydrological models were highly subject to uncertainty owing to the assumptions of the model 

itself and the watershed system complexities, which concerned potential model users (Song et al., 

2015; Zhanling et al., 2009). Uncertainty in model output arose from measurement errors 

associated with input data, model structure, and parameter uncertainty (Abbaspour et al., 2007). 

From these uncertainty sources, uncertainty from parameters was easy to control through 

appropriate model calibration (Wu & Chen, 2015). However, parameter values obtained through 



Bereket Dora and Samuel Dagalo /EJWST. Volume:4:90-122  /2021 (ISSN: 2220 – 7643) 

  92 

 

the calibration process possessed a degree of quantifiable uncertainty because of incomplete 

knowledge of parameter value ranges, physical meaning, and temporal and spatial variability. 

Therefore, model predictions were unreliable when model parameter values were uncertain. In 

some cases, wastage of resources might occur due to overestimating uncertainty, and unexpected 

losses might occur due to underestimating uncertainty (Shen et al., 2012). Therefore, the 

uncertainty of hydrological models should be scrutinized (Abbaspour et al., 2007). In addition, 

Herrera et al. (2022) noted that when models are used to predict the future, it's crucial to limit the 

uncertainty of the outcomes.A variety of uncertainty analysis methods had been developed to 

characterize, control, and quantify the parameter and modeling uncertainties, such as sequential 

uncertainty fitting (SUFI-2), generalized likelihood uncertainty estimation (GLUE), Markov chain 

Monte Carlo (MCMC), and parameter solution (ParaSol). Among these methods, MCMC and 

SUFI-2 were widely used to quantify and control the uncertainty parameter in HEC-HMS and 

SWAT models. Abbaspour et al. (2007) stated that SUFI-2 was applied extensively to analyze the 

sensitivity of parameters and identify the critical source of uncertainty in watershed model outputs. 

MCMC was applied to quantify the uncertainty in modeling watersheds from model parameters. 

While HEC-HMS and SWAT models were widely used hydrological models, investigating the 

uncertainty assessment of the model was essential to improve the reliability of streamflow 

prediction. 

The lack of data about the Ethiopian situation made hydrological modeling efforts challenging to 

manage water resources for sustainable development. Therefore, selecting models that require less 

data was economical and advantageous. Several hydrological modeling studies were conducted in 

Ethiopian watersheds. The HEC-HMS and SWAT models had been extensively used in different 

watersheds in Ethiopia (Abebe, 2017; Abyot, 2008; Aliye et al., 2020; Kassa & Forech, 2009). 

However, no exclusive studies were available on the suitability of these hydrological models in 

the Bilate and Gidabo watersheds. In light of this, the soil and water assessment tool (SWAT) and 

the hydrologic engineering centers-hydrologic modeling system (HEC-HMS) models are utilized 

in this work. Abyot (2008) suggested that the HEC-HMS model outperformed the RRL SMAR 

and RRL TANK models, capturing peak flow in both Bilate and Kulifo watersheds in the Abaya 

Chamo Basin. Kassa and Forech (2009) demonstrated that the models produced acceptable outputs 

in hydrological responses to land use and climate changes. They reported that the SWAT model 
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outperformed the HSPF model when monthly and seasonal stream flow analyses were conducted. 

Abebe (2017) found that both SWAT and HBV-light models successfully predicted the discharge 

in the Geba Catchment. Similarly, Aliye et al. (2020) conclude that the HEC-HMS model 

outperformed other models in simulating the rainfall-runoff process. However,  there appears to 

be no previous studies conducted  on the Bilate and Gidabo watersheds using comparative 

hydrologic models,. As a result, the purpose of this research was to compare the performance and 

applicability of the HEC-HMS and SWAT hydrological models to the Bilate and Gidabo 

watersheds. This study sheds light on which model to use and establishes parameters for future use 

in the two watersheds. Future researchers, hydrologists, agronomists, and water resource managers 

may find this study useful in their future endeavors. 

2. MATERIALS AND METHODS 

2.1. Description of the study area 

Bilate and Gidabo watersheds are among the major watersheds of the Abaya-Chamo sub- basin, 

the Rift Valley Lakes basin in Ethiopia. The geographical location of the Bilate Watershed is 

approximately between 6º40ʹ0ʺN to 8˚5ʹ00ʺ N latitude and 37º48ʹ0ʺE to 38º 36ʹ00ʺE longitudes. 

Similarly, the Gidabo Catchment is located between 6º15ʹ0ʺand 6º55ʹ0ʺN latitude and 38º15′0′′ to 

38º40′0′′ E longitude. 

Bilate River drains southwards into Lake Abaya in the main Ethiopian Rift Valley Basin (Figure 

1). The study area of the Bilate Watershed covers an area of 5316km2 at the entrance of Lake 

Abaya (outlet). The Bilate Watershed elevation ranges between 3329m a.m.s.l in the northern and 

1193m a.m.s.l in the south with a mean elevation of 2261.5m a.m.s.l. The region drained by the 

Gidabo River is bordered by the southern part of the main Ethiopian Rift Valley Basin flowing 

eastwards into Lake Abaya (Figure1). The Gidabo Watershed lies in the Borena Zone of the 

Oromia Region, Gedeo Zone, and Sidama Region, Ethiopia. The estimated area of the Gidabo 

Watershed is 2310 km2. The Gidabo Watershed area ranges between 1183 a.m.s.l near the outlet 

(at the Dam site) to 3173 a.m.s.l in the western part of the watershed with a mean elevation of 

2261.5m a.m.s.l. The average mean maximum and minimum temperatures of Bilate are 32.6°C 
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and 13.3°C, respectively. Moreover, for the Gidabo Watershed, the mean monthly temperature at 

the Gidabo Dam is 15°C to 30°C. The rainfall trend in both watersheds is bimodal. 

 

 

Figure 8. Location of study areas 

2.2 Data Set 

2.2.1. Meteorological data 

The National Meteorological Agency (NMA) of Ethiopia provided meteorological data for both 

the Bilate and Gidabo watersheds, including daily stream flow, daily minimum and maximum 

temperature, daily sunshine hourly, daily wind speed, and daily relative humidity. In this study, 
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eight and three meteorological stations are available within and near the study area for the Bilate 

and Gidabo watersheds, respectively. The data was checked for homogeneity and consistency; 

errors were fixed, and insufficient and missing data were filled in. The study collected daily 

meteorological data from 1987 to 2016. 

The SWAT model requires daily climate data of rainfall, maximum and minimum temperatures, 

wind speed, relative humidity, and solar radiation. The meteorological stations chosen for this 

study had daily air temperature and precipitation data. However, because they have comprehensive 

weather data, data from the Hosana and Dilla gauging stations in the Bilate and Gidabo watersheds, 

respectively, were used in this study. 

2.2.2. Stream flow  

Observed stream flow was required for calibration and validation of both the HEC-HMS and 

SWAT models. Bilate Tena and Measso are terminal gauging stations on the Bilate and Gidabo 

river basins, and stream flow data were collected from the Ethiopian Ministry of Water, Irrigation, 

and Energy. The data were collected over a 17-year period (1999-2015) for Bilate and a 10-year 

period (1997-2006) for the Gidabo Watershed. 

2.2.3. Digital Elevation Model 

Using DEM data as input, HEC-HMS, and SWAT models, the accumulation of flow and stream 

networks were calculated, and the watershed were divided into a number of sub-basins based on 

elevation. A DEM data with a resolution of 30mx30m was used here. A digital elevation model of 

both watersheds is provided in Figure 2. 
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Figure 9: DEM of Bilate and Gidabo watersheds 

The study areas' spatial and time series data were generated in the suitable model format and used 

in the model simulation. Using ArcGIS 10.3, a 30x30m DEM data resolution was used to delineate 

the watersheds at Bilate Tena and Measso gauging stations for Bilate and Gidabo watersheds, 

respectively. Accordingly, the entire Bilate and Gidabo watershed area were divided into 23 and 

13 sub-basins, respectively. These sub-watersheds were further separated into Hydrologic 

response units (HRUs), a unique combination of soil, land use, land cover, and slope characteristic 

areas. The delineated watersheds are indicated in Figure 3. 
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Figure 3:  Bilate and Gidabo Watersheds 

2.2.4. Land use and land cover  

Land use and land cover impact a runoff watersheds, surface erosion, and evapotranspiration. The 

map depicts the various land use/cover classes as well as the physical extent of the study areas. 

The land use/land cover map of the Bilate and Gidabo watersheds was created using Arc GIS 10.3 

software. The predominant land cover in both watersheds is intensively cultivated land. 

2.2.5. Soil data 

The Ethiopian Rift Valley Lake Basin Master Plan study was conducted in 2010, and soil samples 

were collected from all soil units of the basin. In this study, the soil data was collected from 

MoWIE. The Rift Valley Lake Basin Master Plan document was also used to get the soil 
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information (Halcrow, 2010). 203 soil samples from 12 different soil units in the Rift Valley Basin 

were collected, and their physical and chemical characteristics were examined.  

2.3. Hydrological Models 

The HEC-HMS and SWAT hydrological models were used here in this study. The background 

information and the necessary steps used in the modeling processes are described in the following 

sections. 

2.3.1. HEC-HMS hydrological model 

The Hydrologic Modeling System, HMS, was developed by the US Army Corps of Engineers 

Hydrologic Engineering Center (HEC) as a modeling tool for all hydrologic processes of dendritic 

watershed systems. It simplified complex tasks concerning hydrological studies, consisting of time 

series data, losses, runoff transform, open routing, rainfall-runoff simulation, and parameter 

estimation (Feldman, 2000; USACE, 2008). The HEC-HMS model is a physically based and 

conceptually semi-distributed model designed to simulate rainfall-runoff processes in many 

geographic areas, from large river basins to small urban and natural watershed runoffs. In addition, 

the HEC-HMS model uses a separate model that computes runoff, the base flow, and runoff 

volume. The model has four computation methods to address the responsiveness of watersheds, 

such as loss, transform, base flow, and routing. 

The loss methods were designed either for event simulations or continuous simulations. The initial 

and constant loss methods were used to calculate the loss in the catchment, which was the 

maximum potential rate of precipitation loss constant throughout an event. These represented the 

physical properties of the watershed soil, land use, and antecedent condition (Razmkhah, 2016). 

HEC-HMS also had seven different transformation methods which simulated the process of the 

direct runoff from excess rainfall in a watershed. In this study, the Soil Conservation Service (SCS) 

Unit Hydrograph model was used to transform excess rainfall into runoff. The time of 

concentration (Tc) and lag time (Tlag) were employed in the transformation model to compute the 

runoff from excess rainfall.  
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The time of concentration was estimated based on the characteristics of the basin, including 

topography and the length of the reach, using Kirpich's method (Kirpich, 1940): 

𝑇𝑐 =
𝐿0.77

𝑆0.385
          (1) 

The lag time is computed as: 

𝑇𝑙𝑎𝑔 = 0.6 × 𝑇𝑐        (2) 

From different methods included in the model to compute base flow, the constant monthly base 

flow was selected in this study for its suitability to the study areas. The method used long-term 

simulations and required a separate monthly value for the overall simulation period. The average 

minimum flow value was taken before model calibration. 

When runoff traveled through the channel reach, the flood became attenuated owing to channel 

storage effects. The Muskingum method of flood routing was selected in this study. It is often used 

for flood routing in natural channels (Sil et al., 2016). In this model, two parameters were 

calibrated: the coefficient K, which refers to the travel time of the flood wave through routing 

reach, and the dimensionless weighting factor (X), which corresponds to the attenuation of the 

flood wave as it moves through the reach. The Muskingum-Cunge routing equation is given by:  

𝑆𝑡 = 𝐾[𝑋𝐼𝑡 + (1 − 𝑋)𝑄𝑡]       (3) 

where St[L
3] is the storage; It[L

3T-1] is the inflow and Qt [L
3T-1] is the outflow from a given reach. 

Arc hydro and HEC-GeoHMS were used to characterize the watersheds. HEC-GeoHMS mainly 

creates a basin model and a meteorological model and controls specifications before running the 

HEC-HMS model. The prepared basin model and features were taken as background input map 

files and imported to HEC-HMS 4.3. Since we had no observation stations in each sub-basin, the 

precipitation values were estimated by the most widely used Thiessen Polygon method, and 

weights were worked out in HEC-GeoHMS software. 

2.3.2. SWAT hydrological model 

The soil and water assessment Tool (SWAT) is a semi-distributed physically based model 

developed to estimate the stream flow, sediment, and chemical yields in basins. Streamflow 
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generation is modeled along individual hydrologic response units (HRUs) using multiple 

watershed-scale characteristics such as hydraulic conductivity, available moisture content, 

pollutant loading, and management strategies. The HRU-scale results were then piled into sub-

basin-scale outputs using appropriate weighted average procedures. The hydrological entities at 

the sub-basin levels were then routed separately. SWAT simulates surface runoff volumes and 

peak runoff rates for each HRU using daily or sub-daily rainfall levels. The SCS curve number 

and the Green Ampt infiltration methods are two methods available in SWAT to estimate surface 

runoff volume. It was challenging to apply the latter method since the sub-daily time step data 

criterion was difficult to obtain for the study watersheds. Therefore, the SCS curve number method 

was adopted in this study. SWAT model performs the essential water balance computation to 

estimate the different flux components given by Equation 4 (Neitsch et al., 2011) as:  

SW𝑡  = SW𝑜  + ∑ (R𝑑𝑎𝑦  − Q𝑠𝑢𝑟𝑓 −  Ea −  𝑊𝑠𝑒𝑒𝑝  − Q𝑔𝑤)𝑡
𝑖=1    (4)  

where 𝑆𝑊𝑡 is the final soil water content (mm), 𝑆𝑊𝑂 is the initial soil water content (mm), t is time 

(days), Rday is the amount of precipitation on a day i (mm), 𝑄𝑠𝑢r𝑓 is the amount of surface runoff on 

a day i (mm), 𝐸𝑎 is the amount of evapotranspiration on a day i (mm), Wseep is the amount of water 

entering the vadose level zone from the soil profile on day i (mm), and 𝑄𝑔𝑤, is the amount of return 

flow on day i (mm). 

The model also calculates evaporation from the soil and plant canopy surface separately. The 

potential evapotranspiration (PET) and leaf area index (LAI), or the ratios of plant leaf area to the 

soil surface, are explicit functions of soil water evaporation. Depending on the input data available, 

the PET of the catchment could be computed using the Penman-Monteith, Priestley–Taylor or 

Hargreaves approaches. In the present study, the Penman-Monteith approach was used, which was 

given by (Allen et al., 1998): 

𝐸𝑇𝑜 =
0.408(𝑅𝑛𝑒𝑡−𝐺)+𝛾

900

(𝑇+273)
𝑈(𝑒𝑠−𝑒𝑎)

𝛥+𝛾(1+0.34𝑈)
      (5) 

where, ETo is daily reference crop evapotranspiration [mm day-1], Rnet is net radiation flux [MJm-

2day-1], G is heat flux density in the soil [MJm-2day-1], 𝛾 is psychometric constant [KPA°C-1], U is 

wind speed measured at 2 m height [ms-1]; es is saturation vapor pressure ea = es * RH/100 [KPA], 

RH is relative humidity [%] and Δ is slope of the saturation vapor pressure curve [KPa°C-1].  
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2.4 Model Sensitivity analysis 

Sensitivity analysis determines how much a change in an input parameter affects the model 

response. Prior to assessing the major impact of input variability on certain model outputs of 

interest, the sensitive parameter was ranked. The output response changes when the most sensitive 

parameter is used. As a result, sensitivity analysis was used in this study to find sensitive model 

parameters and link them to catchment runoff generating features (Saltelli et al, 2000).  

The sensitivity analysis was carried out manually in HEC-HMS to identify understand the most 

influential model parameter from selected key parameters. The SUFI-2, on the other hand, 

determines sensitivity for the SWAT model using global sensitivity analysis. The sensitivity ranks 

of parameters were assigned in the SUFI-2 method based on the p-value and t-stat values. Based on 

previous research on rainfall-runoff simulation using the SWAT model (Abebe, 2017; Aliye et al., 

2020; Amaru Ayele & Gebremariam, 2020), key parameters were chosen to implement sensitivity 

and uncertainty analysis using the SUFI-2 model for both watersheds. 

2.5. Model Evaluation and Statistical Analysis 

Accuracy, consistency, and adaptability of hydrological models is essential for a better prediction 

of watershed responses. Therefore, the prediction efficiency criterion is required to assess the 

performance of the model. The performance of HEC-HMS and SWAT models was evaluated in 

terms of coefficient of determination (R2), Nash and Sutcliffe Simulation Efficiency (NSE), 

Relative Volume Error (RVE), Percentage Error Peak Flow (PEPF), and Mean Absolute Error 

(MAE). A common method of evaluating hydrological model performance and behavior is to 

compare computed and observed variables. The R2 value represents the strength of the relationship 

between the observed and simulated values. The value of R2 ranges from zero to one, with higher 

values indicating better agreement of simulated and observed values. The Nash-Sutcliffe 

Simulation Efficiency (ENS) displays the degree of fitness of the observed and simulated plots. The 

ENS also assesses how well the simulated results predict the measured data.  

RVE indicates the variation between simulated and observed discharge on relative bases.The 

relative volume error can range between -∞ and ∞ but it performs best when a value is zero showing 

there is no difference between simulated and observed discharge occurs. 
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The statistical indexes are given as: 

R2 =   [∑ (𝑌𝑠𝑖𝑚−𝑌 ̅𝑠𝑖𝑚)(𝑌𝑜𝑏𝑠−�̅�𝑜𝑏𝑠)𝑛
𝑖=1 ]

2

∑ (𝑌𝑠𝑖𝑚−�̅�𝑠𝑖𝑚)2(〖𝑌𝑜𝑏𝑠−�̅�𝑜𝑏𝑠)〗2𝑛
𝑖=1

       (6) 

where Ysim is simulated discharge, �̅�𝑠𝑖𝑚 is the average of simulated discharge, Yobs is observed 

discharge,  �̅�𝑜𝑏𝑠 is the average of observed discharge (m3/s). 

ENS = 1 −
 ∑ (𝑌𝑜𝑏𝑠−𝑌𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑌𝑜𝑏𝑠−�̅�𝑜𝑏𝑠)2𝑛
𝑖=1

       (7) 

𝑅𝑉𝐸 =
∑ 𝑌𝑠𝑖𝑚−∑ 𝑌𝑛

𝑖=1 𝑜𝑏𝑠
𝑛
𝑖=1

∑ 𝑌𝑜𝑏𝑠
𝑛
𝑖=1

        (8) 

Hence, the models were calibrated and validated using daily and monthly observed stream flow 

data obtained from MoWIE. For Bilate Watershed, the models were run from the simulation period 

(1999-2015). The first two years’ data (1999-2000) were used for model initialization; the data for 

the next 10 years (2001-2010) was used for the model calibration and the remaining five years’ 

(2011-2015) data was used for model validation. For the Gidabo Watershed, the data of one year 

(January1997-December 1997) stream flow was used for model warm-up; the data from 1998 to 

2003 was used for model calibration and the remaining three years data (2004-2006) was used for 

the model validation. Both the HEC-HMS and SWAT models were automatically calibrated and 

validated at Bilate (Bilate Tena) and Gidabo (Measso) outlets. During calibration, sensitivity 

analysis was performed manually for the HEC-HMS model and automatically for the SWAT 

model using the SWAT CUP software's SUFI-2 program. 

2.6 Model Uncertainty 

2.6.1. Uncertainty analysis in the HEC-HMS model 

Uncertainty refers to the state of being uncertain about something. So far, there are four major 

sources of uncertainty in hydrologic modeling: (i) input uncertainty, e.g., sampling and 

measurement errors in catchment rainfall estimates; (ii) output uncertainty, e.g., rating curve errors 

affecting runoff estimates; (iii) structural uncertainty (model uncertainty) arises from a lumped and 

simplified representation of hydrological processes in hydrologic models and (iv) parametric 

uncertainty, reflecting the uncertainty in hydrologic models (Renard et al. 2010). 
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There are several approaches available to estimate uncertainty in hydrological models. The 

"Markov Chain Monte Carlo" approach was chosen for this investigation and incorporated in the 

present study. Convergence is attained when statistical measurements of the watershed response 

do not change as more samples are computed. The convergence of MCMC to a stable posterior 

probability density function (PDF) was monitored using statistics (Gelman & Rubin, 1992). 

Convergence is declared when R ≤1.2 for all j = 1 d, where d represents the number of parameters. 

The calibration parameter constraints determine the simulated upper and lower bounds of the 

parameter (Scharffenberg, 2016). Finally, the upper, lower, and simulated hydrographs are plotted 

after determining the best upper and lower bounds for a hydrograph. The uncertainty is said to be 

low if most of the simulated hydrograph lies between the lower and upper bounds and high if the 

computed hydrograph lies outside the bound. As shown in equations 9, 10, and 11 below, the P-

factor and R-factor are used to determine the strength of calibration/uncertainty of model 

parameters (Tegegne et al., 2019). 

2.6.2. Uncertainty analysis in the SWAT model 

SUFI2 was chosen for this investigation because it converged with fewer iterations and allowed 

for resuming unfinished iterations and breaking iterations into multiple runs. The SUFI-2 

algorithm, in particular, was well suited to the calibration and validation of the SWAT model 

since it incorporated all sources of uncertainty (Abbaspour et al., 2007). The P-factor, the 

percentage of measured data bracketed by the 95 percent prediction uncertainty (95PPU)., 

quantified the extent to which all uncertainties were accounted. As a result, the percentage of 

data captured (bracketed) by prediction uncertainty indicated our uncertainty strength of 

analysis. The 95PPU was calculated at the 2.5 % and 97.5 % levels of the cumulative 

distribution of an output variable obtained through Latin hypercube sampling, with 5% of very 

bad simulations excluded. 

The R-factor, the average thickness of the 95PPU band divided by the standard deviation of the 

measured data, was the other way to estimate the strength of a calibration and uncertainty analysis. 

As a result, SUFI-2 tried to bracket as much of the collected data as feasible with the smallest 

possible uncertainty band. The P-factor has a theoretical range of 0 to 100%, while the R-factor 
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has a theoretical range of zero to infinity. A simulation with a P-factor of 1 and an R-factor of zero 

corresponds to measured data. 

𝑃 = ∑ (𝑍𝑡/𝑇)𝑇
𝑖=1 ∗ 100        (9) 

𝑍𝑡 = {
 1, 𝑖𝑓 𝑄𝑡

𝑂 ∈ (𝑄𝑡,2.5% ,
𝑆 𝑄𝑡,97.5%

𝑆 ) 

0,                             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (10) 

where Zt has a value of 1 when the observed discharge is within the 95PPU interval; t is the 

simulation time step; T is the number of time step in the observed data; 𝑄𝑡
𝑂 the observed data at 

time step t; 𝑄𝑡,2.5% ,
𝑆  and 𝑄𝑡,97.5%

𝑆   represent the simulated lower (calculated at the 2.5% level of the 

cumulative distribution) and higher (97.5% level) boundaries at time t, with S indicating the 

simulated data, and O observed data.  

𝑅𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑎𝑣𝑟(𝑄𝑡,97.5%

𝑆 −𝑄𝑡,2.5% ,
𝑆 )

𝑠𝑡𝑑𝑒𝑣 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑎𝑡𝑎
       (11) 

 

3. RESULTS AND DISCUSSIONS 

3.1 Sensitivity Analysis 

The primary goal of sensitivity analysis is to describe how changes in model input values affect 

model outputs. Therefore, we performed sensitivity analysis manually to determine the most 

sensitive parameter in HEC-HMS. The sensitivity of the HEC-HMS model was evaluated using 

six key parameters from both watersheds. The results showed that constant rate (CR) and lag time 

(LT) were the most sensitive parameters. On the other hand, other parameters had no or only a 

minor impact on the model output (streamflow).  Figure 4 shows the model-sensitive parameters.  
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Figure 4. Model sensitivity using NSE in a) Bilate and b) Gidabo watersheds 
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governing subsurface water responses (ALPHA BF and GW REVAP) were found to be the most 

sensitive parameters in the Bilate Watershed, with a low p-value and a high absolute value of t-

statistics. In the Gidabo Watershed, as represented in Figure 6, the relatively high sensitivity of 

CN-2 followed by SOL_AWC in the Gidabo Watershed indicated high runoff potential in the 
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result, percolation of water and aquifer return flow might be restricted (Saha et al., 2014). This 

could be due to the variable properties of the input catchment. The curve number parameter (CN_2) 

arising from land use and antecedent soil water conditions was found to be the most sensitive 

model parameter, followed by SOL_AWC. The other parameters were found to be less sensitive 

in the simulation of stream flow. Figure 5 and Figure 6 shows the model sensitivity analysis and 

parameters in the SWAT model. 

 

 

Figure 5. SWAT global model sensitivity for Bilate watershed 

 

Figure 6. SWAT global model sensitivity for Gidabo watershed 
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3.2. Hydrological Model Calibration and Validation  

Model calibrations were performed by fine-tuning the most sensitive model parameters within a 

given range in order to achieve agreement between simulated and observed stream flow in each 

watershed. The sections that follow describe the model calibration and validation efforts that were 

carried out using both hydrological models. 

3.2.1. HEC-HMS model calibration and validation 

The parameters_ constant loss rate and lag time _showed significant variability in the rainfall-

runoff modeling (HEC-HMS) of both watersheds during the calibration period. In contrast, routing 

parameters (K and X) remained constant. According to the volume relative error result in HEC-

HMS, RVE was low in both watersheds, with absolute values less than 10%. In the Bilate and 

Gidabo watersheds, the mean magnitude of computed daily stream flow values was within a very 

good range (RVE>10). In terms of reproducing the observed pattern of daily stream flow during 

calibration and validation (NSE = 0.55) and coefficient of determination (R2=0.55), satisfactory 

performance was observed in Bilate Watershed. The response of Gidabo Watershed to the HEC-

HMS model was better than that of the Bilate Watershed in all evaluation criteria performed in 

daily and monthly stream flow simulations. HEC-HMS performed well during calibration 

(NSE=0.65) and was satisfactory in the validation period (NSE=0.63). Similarly, the regression 

coefficient indicated that the simulated discharge was (R2 =0.65) during the calibration and 

validation period. This showed the capability of the HEC-HMS model in simulating the observed 

stream flow hydrograph and the good correlation with observed flow data in the Gidabo 

Watershed. These HEC-HMS model results were consistent with previous studies in the Rift 

Valley Basin: HEC-HMS (Aliye et al., 2020; Kebede, 2017; Legesse, 2020). Table 1 shows the 

model calibrated parameters and their ranges for both watersheds.The percentage error in peak 

flow (PEPF) of HEC-HMS model was 68% in the Bilate Watershed and 21% in the Gidabo 

Watershed. The value of these measures confirmed that HEC-HMS captured peak flow in both 

watersheds satisfactorily. Furthermore, the mean absolute error of the HEC-HMS model was 0.63 

in the Bilate Watershed and 0.04 in the Gidabo Watershed, indicating that the HEC-HMS models 

simulated with a lower mean absolute error during the calibration and validation period in both 

watersheds. 
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Table 1: Parameter range and their calibrated values for Bilate and Gidabo watersheds 

No parameters Bilate Gidabo 

  

Range 

Fitted 

value Range 

Fitted 

value 

1 Constant rate (CR) 2.7-4.3 3.5 1.35-3.2 2.42 

2 Initial deficit( ID) 0.1-2.3 1.89 0.001-2.1 2 

3 

Maximum 

deficit(MD) 2.8-5.8 5.7 2.11-2.99 2.5 

4 Lag time  (LT) in min 

11000-

13000 12000 25100-27400 26000 

5 Muskingum (K) 0.1-145 1 125-145 145 

6 Muskingum (X) 0.1-0.44 0.1 0.01-0.45 0.1 

The relationship between daily observed and simulated streamflow hydrographs (Figure 6) was 

better in the Gidabo Watershed than in the Bilate Watershed. Because of the inspection, the 

performance of the model in simulating the hydrograph's base flow and rising and falling limbs 

was better in the Gidabo Watershed than in the Bilate Watershed.  

 

 

Figure 7.  Daily observed and predicted stream flow hydrographs during the calibration and validation 

period for Bilate (a) and Gidabo (b) watersheds 
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Figure 8. Scatter plot for the calibration Bilate (left) and Gidabo (right) 
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Figure 9.  Monthly observed and predicted stream flow hydrographs during calibration and validation period 

for Bilate (a) and Gidabo (b) watersheds 
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The statistical values were better on a monthly time scale in both models (HEC-HMS and SWAT) 

because monthly values were the mean of the physical phenomena, and models were good for 

average conditions compared to extreme events. Moreover, in monthly time steps, the differences 

that affected the hydrologic processes on a smaller temporal time step were smoothened. 

Table 2. SWAT model calibrated parameters for Bilate and Gidabo watersheds 

Parameters  Effect of parameter 

when its value increase 

Recomme

nded range 

Fitted value 

Bilate Gidabo 

ALPHA_BF  Increase the ground 

water flow response to 

changes in recharge 

0-1 

0.01953 0.0001 

CN2  Increase surface runoff  35-98  0.25560 1.7406 

Groundwate

r 

Decrease base flow  0-5000  

5.48984 840.50 

ESCO  Decrease evaporation  0-1  * 0.0059 

SOL_AWC  Increase groundwater 

recharge  

0-1  

0.95752 0.7972 

CANMAX  Increase the canopy 

water trapping and 

storage 

0-10 

* 0.4716 

REVAPMN  Decrease the actual 

amount of water 

moving into the soil 

zone in response to 

water deficiencies 

0-500  

165.589 0.1659 

GWREVAP  Decrease base flow by 

increasing water 

transfer from shallow 

aquifer to root zone 

0.02-

0.2  

0.06791 0.3193 

SOL_ZMA

X 

Maximum rooting 

depth of soil profile 

0-3500  

* 0.5005 

SOL_K Saturated hydraulic 

conductivity 

0-2000 

* 93.391 

GW_DELA

Y 

Groundwater delay 

time 

0-500 

2.34398 2.5089 

CH_K2 Effective hydraulic 

conductive of main 

channel 

0-500 

113.742 0.7362 

RCHRG_D

P 

Deep aquifer 

percolation fraction 0-500 * 0.0014 

*Indicate the parameters are insensitive and not significant in Bilate watershed  



Bereket Dora and Samuel Dagalo /EJWST. Volume:4:90-122  /2021 (ISSN: 2220 – 7643) 

  112 

 

 

 

Figure 10. Daily observed and simulated stream flow hydrograph during calibration and validation periods 

for Bilate (a) and Gidabo(b) watersheds 
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Figure 11. Scatter plot for the calibration Bilate (left) and Gidabo (right) 
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SWAT model was also used to build user confidence in the predictive capabilities of the model. 

As a result, the model was validated using daily data collected from both watersheds. During 

validation, the performance of the modelwas evaluated using R2, NSE, and RVE. The statistical 

values in the validation period were (R2=0.54), (NSE=0.52), and (RVE=-6) for the Bilate 

Watershed and (R2=0.6), (NSE=0.56), and (RVE=11) for Gidabo Watershed at the daily time step. 

 

 

Figure 12. Monthly observed and simulated stream flow hydrograph during calibration and validation periods 

for Bilate (a) and Gidabo(b) watersheds 
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reproducing the stream flow adequately. Table 3 shows the statistical indices used to evaluate the 

model performances in both watersheds.  

As per Moriasi et al. (2015), the two models were sufficient in terms of matching the observed 

pattern of stream flow hydrographs in both watersheds. Meanwhile, as evaluated by the coefficient 

of determination (R2), both models in the Bilate Watershed exhibited an acceptable correlation 

between observed and simulated flow peaks. HEC-HMS showed good performance in the Gidabo 

Watershed whereas SWAT model performed satisfactorily in the same watershed. Despite their 

similar modeling capabilities, a comparison analysis revealed that the HEC-HMS model was better 

in predicting the overall variation of stream flow for both watersheds. This may be attributed to the 

fact that SWAT needed more input variables and parameters than HEC-HMS. SWAT model 

simulations might have probably drawn many uncertainties and hence reduced the model 

performance during model calibration and validation times. It should be noted that the model 

uncertainties were also related to model inputs which a modeler could not easily identify. Input 

variables are acceptable and perfect despite having uncertainties as described by Renard et al. 

(2010). Similar observations were made by Aliye et al. (2020). Ismail et al. (2020) who simulated 

streamflow using the HEC-HMS model found that HEC-HMS was better than the SWAT model. 

Despite the performance of each model that differed from watershed to watershed, the selected 

models performed relatively better in the Gidabo Watershed than in the Bilate Watershed. This may 

be attributed to factors influencing runoff generation in both watersheds, including land use and 

land cover, climatic conditions (mainly rainfall characteristics), morphometric conditions, and soil. 

The Gidabo Watershed had a small area covered by forest  whereas the Bilate Watershed had no 

forest land use.. On the other hand, the catchment area of Bilate was well above that of Gidabo, and 

its slope range was comparatively high. Therefore, a relatively average condition of hydrologic 

response was possible compared to hydrologic responses in the Bilate Watershed. This would favor 

hydrologic models to simulate responses better. However, future investigation of hydrologic 

responses and enforcement of variables concerning hydrologic models' capability should be done 

to capture these events. The HEC-HMS was a suitable and sufficient model for simulating daily 

and monthly stream flow compared to SWAT. 

HEC-HMS consistently underpredicted peak flows. Ismail et al. (2020) also discovered that the 

HEC-HMS model was unable to model peak flows. (Meenu et al., 2010) agreed with this study 
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because HEC-HMS was unable to replicate peak flows. SWAT was found to be more effective than 

HEC-HMS in capturing targets in both watersheds over daily and monthly time intervals. 

Table 3.  Statistical indicators to evaluate the performance of models for daily and mean monthly time steps in 

Bilate and Gidabo watersheds 

Watershed Model Process Statistical 

Index 

Daily description Monthly Model 

performance 

Bilate 

HEC-

HMS 

Calibration NSE 0.54 satisfactory 0.79 Good 

R^2 0.55 satisfactory 0.81 very good  

RVE -5.39 good -5.31 good  

Validation NSE 0.55 satisfactory 0.72 Good 

R^2 0.55 satisfactory 0.73 Good 

RVE -6.94 good -6.49 good  

SWAT 

Calibration NSE 0.53 satisfactory 0.62 satisfactory 

R^2 0.55 satisfactory 0.65 good 

RVE -14.46 good -14.45 satisfactory 

Validation NSE 0.51 satisfactory 0.68 good 

R^2 0.52 satisfactory 0.65 good 

RVE -6.01 good -5.74 good  

 

Gidabo 

HEC-

HMS 

Calibration NSE 0.65 good 0.85 very good  

R^2 0.65 good 0.86 very good  

RVE 0.46 very good 0.5 very good  

Validation NSE 0.63 good 0.86 very good  

R^2 0.65 good 0.88 very good  

RVE 6.02 good 6.59 good  

SWAT 

Calibration NSE 0.58 satisfactory 0.73 good 

R^2 0.61 good 0.77 good 

RVE 1.3 very good 0.49 very good  

Validation NSE 0.56 satisfactory 0.73 good 

R^2 0.6 good 0.78 good 

RVE -11.41 good -11.44 good 

 

3.4. Model Uncertainty 

Uncertainty analysis helps understand the predictive power and limitations of a model, , and 

make informed decisions. According to Sánchez et al. (2015) uncertainty analysis is the formal 

process of defining a model and mapping it onto model output uncertainty, thereby measuring 

the range of possible outcomes.  
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The MCMC approach reduced the source of uncertainty resulting from parameters in HEC-

HMS. The convergence of MCMC to stable posterior probability density function (PDF) was 

monitored by using statistics (Gelman and Rubin, 1992). The P-factor and R-factor were used 

to determine the strength of model calibration and uncertainty (Abbaspour, 2014). The P and 

R factors of Bilate Watershed were 0.34 and 0.1, respectively. In the Gidabo Watershed, they 

were 0.34 and 0.22, respectively. According to the uncertainty analysis results, the number of 

goodness-of-fit criteria (NSE, RVE, and R2)was within acceptable limits. As a result, the 

parameters used to simulate streamflow in the Bilate and Gidabo watersheds using HEC-HMS 

with input data were valuable and useful for future research (Figure 13).   

SWAT CUP uses SUFI-2, an essential tool for continuous iteration, to help understand 

uncertainty in the SWAT model. In SUFI-2, all the uncertainty sources were not separately 

predicted but considered total model uncertainty to the parameters. The P and R factors were 

used from the 1000 model runs simulated in SUFI-2 to define how much of the simulated 

hydrograph brackets observed streamflow. A P-factor of 0.46 and an R-factor of 0.40 was 

obtained during calibration in the Bilate Watershed . In the Gidabo Watershed, the P-factor 

and R-factor were 0.80 and 0.88, respectively. Because the P and R factor values were in the 

optimum range, the goodness-of-fit of the model was reasonably acceptable (Figure14).  

Regarding model prediction uncertainty, MCMC in HEC-HMS predicted the smallest 

uncertainty band in both watersheds compared to SUFI-2 in SWAT. This was because MCMC 

in HEC-HMS would not account for input data and model structure uncertainty, resulting in 

an underestimation of prediction uncertainty (Zhang et al., 2015). Furthermore, the parameter 

uncertainty predicted by MCMC only accounted for a small portion of the total uncertainty, 

whereas SUFI-2 considered all sources of uncertainty, resulting in broader parameter ranges. 

Therefore, model prediction uncertainty analysis and parameter uncertainty value ranges were 

reasonably acceptable (Abbaspour, 2014) 
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Figure 13: Uncertainty analysis in HEC-HMS model Bilate (left) and Gidabo (right) 

 

Figure 14: Uncertainty plot for SWAT Bilate (left) Gidabo (right) watershed 
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4. CONCLUSION  

This study compared the performance of the HEC-HMS and SWAT models in stream flow 

simulation to determine the best model for the Bilate and Gidabo watersheds. Observed stream 

flow at the outlets of the Bilate and Gidabo watersheds were used for comparison. It was 

discovered that the performance of both models was superior in both watersheds. However, in both 

watersheds and for daily and monthly time steps, the HEC-HMS hydrological model outperformed 

the SWAT model. Furthermore, the HEC-HMS model was predicted to outperform the Bilate 

watershed in the Gidabo Watershed. As a result, the HEC-HMS hydrological model would be 

preferred to the SWAT hydrological model. In fact, due to the economics of hydrological 

modeling, the need for model input data in SWAT pushes it aside. Hydrologists are advised to 

look for the HEC-HMS model in general, and the Gidabo Watershed in particular, unless specific 

needs and high accuracies are not deemed necessary based on detailed input data.The uncertainty 

analyses also favored the HEC-HMS model, which predicts stream flow response with less 

uncertainty. This research will be beneficial to future hydrologists and practitioners. 
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