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ABSTRACT  

This paper proposes a methodology to model floodplain inundation patterns in data-scarce areas by using global 

remote sensing data. In particular, MODIS data are used for hydraulic model (HEC-RAS) calibration and validation 

purposes which is coupled with Geographic Information System (GIS) to map flood extent areas, while NASA's 

SRTM is used to describe floodplain topography. The Fogera floodplain (the upper Blue Nile in Ethiopia) is used 

as an example application to illustrate the methodology. To this end, parameter and input uncertainty is explicitly 

taken into account and visualized via probabilistic floodplain maps of the ensemble simulation. In view of that, 

model performance, reliability, and predictive uncertainties are critically discussed.  This approach revealed that a 

better characterization and visualization of the flood hazard. Also, the study investigates the impact of land-use 

changes on floodplain inundation patterns using a SWAT modeling system and the propagation of this land-use 

change in flood inundation patterns is seen again via probabilistic flood maps. This helps planners to use remote 

sensing data to model and monitor flooding.   
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1. INTRODUCTION 

Flooding is a usual process, which may lead to disastrous consequences if it overlaps with the 

occurrence of a susceptible object (Hiben Mehari G and G. Tesfa-Alem). Nowadays, this situation 

is happening often in Africa at an alarming rate and noticeably causing flood-related fatalities as 

well as economic losses as reported by Padi, et al., (2011). Indeed consistent methods are needed to 

perform flood damage estimates to formulate an early warning system and all possible ways of living 

with the flood. However,  no comprehensive data and guides are available to deal with the situation 

easily   (Di Baldassarre and Uhlenbrook, 2012). For instance, a flood catastrophe may arise when 

human settlements accord with extreme rainfall events, an upswing of water stages, or dam breaks 

(Hiben Mehari G and G. Tesfa-Alem). Thus, the occurrence and severity of flood disasters depend 

mainly on the topography, climate, rainfall distribution, watershed, economy, and land use of a 

certain region (Bronstert, 2003;Douben, 2006;De Wrachien,et al., 2011). According to Barredo 

(2007) and Di Baldassarre and Uhlenbrook (2012) the significance of floods is self-evident that flood 

disasters account for about a third of all-natural disasters in terms of their number and associated 

economic losses. In Ethiopia, nonstop land use/cover changes endorsing flooding have been allied 

with the absence of proper land use planning, poverty and unmanageable land use management 

(Moges,et al., 2010). 

This study aims at assessing the significance of remote sensing data at supporting our ability to deal 

with the extreme consequences of recent catastrophic flood events in Ethiopia and future research 

agenda that have highlighted that flood risk prevention still needs to be improved to reduce human 

losses and economic damages caused by flood disasters. These studies proved that, hydrologic and 

hydraulic models are powerful tools for supporting flood risk management and lowland 

development. Floodplain mapping, in particular, is a focus of many researchers and practitioners, 

and it is a successful measure to prevent new human settlements in flood-prone areas and raise the 

awareness of living with floods (Cuny, 1991;Venkatachary, et al., 2001). However, it is becoming 

difficult to develop hydraulic models and produce flood risk/ mitigation planning maps due to the 

unavailability of hydrological and topographical data. According to Tarekegn, et al.(2010) on the 

same study area of this research there was a critical discussion on how to improve the Digital 

Abbreviations should be defined in parentheses the first time Elevation Model (DEM) uncertainty 

from freely available remote sensing data that was obtained from ASTER product. However, still 

the discussion had concerns about the newly introduced uncertainties associated with the correction 

of the DEM. These were the reconstruction of the river terrains and the integration of the results into 
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the raster DEM using the Inverse Distance Weighting (IDW) interpolation technique. In addition to 

this, the study reported that the simulated area of the flood extent couldn’t capture the area of flood 

extent obtained from the 2006 MODIS product (Fig.1) for different reasons. This posed different 

questions. One might be argue that MODIS images have high errors caused by large-scale wetting 

of the land surface by direct rain (Tarekegn, et al., 2010). And other may say the contribution of the 

ungauged flows is uncertain as reported by Wale, et al. (2009). The study indicated that the detailed 

assessment of effects of ungauged catchments requires installing of additional stream gauges in the 

area, and alternatively observed stream flows can be extrapolated to ungauged catchments using a 

regionalization theory. Also, some other papers studying on this area (Merwade, et al., 2008) state 

that the effects of high water levels of Lake Tana are observed up to a distance of 13 km upstream 

from the lake what indicates that back-waters effects from Lake Tana play a role in the flooding 

patterns. Therefore, these techniques might be improved by introducing a probabilistic approach to 

compensate for the uncertainties coming from different sources of uncertainty. To this end, this 

research deals with the hydrological and hydraulic modeling of the Fogera floodplain system in 

Ethiopia, with a focus on the usefulness of the current growth in availability of globally and freely 

available remote sensing data for the production of probabilistic floodplain maps under different 

sources of uncertainty. In particular, parameter and input uncertainty is explicitly taken into account, 

as it is well known that hydraulic models are affected by different significant sources of uncertainty 

(Merwade, et al., 2008;Di Baldassarre, et al., 2009; Tarekegn,et al., 2010). Therefore, this study 

deals with an uncertainty-based approach to produce probabilistic floodplain maps of data-scarce 

areas as an example application in the upper Blue Nile (Ethiopia). Therefore, this case study is 

considered as a more adequate approach to visualize flood hazards via probabilistic flood maps. 

Furthermore, the study also aims at coupling the hydrological and hydraulic models by performing 

scenarios of land-use change in the hydrological model and sees its effect via a probabilistic map 

from hydraulic models.  This is also directly related to the adaptation to land-use change and be able 

to see how the system behaves under these different adaptation options.  

Finally, yet importantly, this paper describes and compares the merits and demerits of the 

deterministic and probabilistic approaches for the floodplain mapping techniques and evaluation 

process. Accordingly, the research is in favor of the probabilistic approach as one can’t be sure of 

the system behavior and what’s going on in the process. 
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2.  MATERIALS AND METHODS  

2.1. Study Area  

The study was performed in the Blue Nile sub-basin (a major source of the Nile River) around Lake 

Tana (Fig.1). The major rivers draining to the lake are Gilgel-Abay, Magech, Ribb, and Gumera. 

The Gilgel-Abay flows in the north direction to the lake, the Magech flows to the south through the 

floodplains of Dembya, and the Ribb and the Gumera flow through the Fogera floodplains. The test 

site is the Fogera floodplain on 29 and 35 km of the Ribb and Gumara rivers respectively. For this 

test site, NASA's SRTM topography and airborne imagery of the Dartmouth Flood Observatory 

(DFO) are used. DFO provides a MODIS image for the 2006 prolonged flood event experienced in 

the area (Fig.1) and this image is used for the model calibration and validation process. It is vital to 

note that this flooded area (Fig. 1) cannot be well-thought-out error-free. For example, Schumann, 

et al., (2009) analyzed the uncertainty of flood extent maps derived from satellite imagery and 

proved the necessitate to shift from deterministic binary (wet/dry) maps to probabilistic inundation 

maps. Thus, this paper aims to argue and analyze the main source of observation uncertainty to 

perform a possible paradigm shift to represent the flooding extent maps in data scares areas.  

  

 
 

Figure 1: The Fogera floodplains from MODIS satellite imagery 2006 [Source: 

http://www.dartmouth.edu/~floods/2006174 Nile.html] 

 

http://www.dartmouth.edu/~floods/2006174%20Nile.html
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3. DATA USED  

3.1. Flood inundation modeling 

This study uses, HEC-RAS a one-dimensional hydraulic model which is capable of simulating the 

water surface profile of steady and unsteady flow in natural and artificial channels that solves De 

Saint-Venant equations with an algorithm based on the Preissmann implicit four-point finite scheme 

(Preissmann, 1961). The selection of 1D or 2D model depends on the purpose of the study and the 

dimension of the model. A 2D model that solves other complex equations will bring about more data 

and parameter uncertainties. It is vital to eliminate various sources of uncertainties if the research 

purpose is to assess the applicability of SRTM DTM to support global flood mapping. Furthermore, 

a 1D model is far more efficient than a 2D model when computation time is a key issue, particularly 

for large-scale models. While applied to waterway floodplains where 1D flow is Principal, HEC-

RAS can produce results with a level of accuracy analogous to 2D models (M. S. Horritt and Bates, 

2002). HEC-RAS is capable of making, in the same way, good predictions of the inundated area as 

2D model, whether calibrated against hydrometric data or flood extent of another event, compared 

with LISFLOOD-FP  (a raster-based inundation model) and  TELEMAC-2D (a distributed model 

solves 2D shallow water equations of free surface flow) (M. S. Horritt and Bates, 2002). In the same 

way, simulation of steady-state has fewer uncertainties of input data than unsteady state simulation. 

In view of the fact that steady-state only regard as one value of peak discharge at the upstream 

boundary. It will symbolize the magnitude of this flood event and at the same time reduce 

uncertainties brought by the time series of unsteady state. For that reason, this study simulates the 

steady flow state using a 1D HEC-RAS model.  

3.2. Model Calibration (2006 Flood)  

We need models to make qualitative and/or quantitative predictions. In this regard, model calibration 

plays a key role in building a model. In view of that in August 2006, the Ribb and Gumara Rivers 

experienced a significant flood event (Fig.1). The return period for such an event was estimated with 

an exceedance probability of 2 years from the flood frequency analyses. The model was calibrated 

by comparing the flood extent of each cross-section with the high water marks (from MODIS) in the 

aftermath of the August 2006 flood event (Fig.1). Different sets of Manning’s n values are tested to 

get the best fit model. Given the homogeneous characteristics of the river reach, the potentially 

distributed Manning’s n value was limited to one value for the channel and one for the floodplain 

(Di Baldassarre, et al., 2009). These values are ranged from 0.02 to 0.06 with an interval of 0.01 for 
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the channel, and from 0.06 to 0.16 with an interval of 0.02 for the floodplain. Therefore, there are 

35 different combinations of Manning’s n values and 35 simulations were made to find the optimal 

combination of Manning’s coefficient (Fig.2). Apparently, those unrealistic Manning’s n sets of 

which the one on the main channel is larger than the one on floodplain would be eliminated. This is 

due to the consensus that the roughness of the riverbed is smaller than that of the floodplain since 

flow scours the riverbed almost all the time to make it smooth. Then, this makes the Manning’s n on 

the channel to be smaller than floodplains.From the context of model performance as stated by 

Werner (2004) where one model is evaluated against another based on the objective function set for 

model evaluation. This is because of the uncertainty approach where there are different model results 

and are evaluated based on a certain criterion known as the objective function. This can be set 

according to the purpose of the study. In this particular research mean absolute error (MAE) and 

Nash & Sutcliffe coefficient (Ns) are set as the evaluating criteria. In addition to this, performance 

is predominantly viewed from the concept of model reliability and this reliability can be articulated 

as the reciprocal to predictive uncertainty (Werner, 2004). The results indicate that the calibration 

of the roughness parameter which together with the geometry is considered to have the most 

important impact on predicting inundation extent, and flow characteristics. Manning’s roughness 

coefficients for the Gumara and Ribb rivers (Fogera floodplain) cannot be measured explicitly and 

must be determined through calibration. The idea of parameter uncertainty analysis estimation 

method (Fig.2) is involved in this study in the quantification of the uncertain parameters and their 

propagation throughout the model in predictions of the inundation patterns.  Therefore, calibrating 

Manning coefficient model packages focus basically on improving the performance of the model. 

One may pose a question about how this work could be successful, but the answer is simple and 

tricky because the overall importance and meaning of calibration are to match up the model result 

with the benchmark (in this case satellite imagery from MODIS) through all possible ways. In other 

words, calibration is the art of diplomacy between the model result and the benchmark by reducing 

all the possible sources of uncertainty associated with the model. Hence, in this case, study the idea 

of calibration of the Manning coefficient is done based on the principles and notions of improving 

the reliability of the model by reducing the uncertainties in the model using an expert judgment of 

all possibilities. Understanding of such uncertainty is very essential and update to improve flood 

forecasting, floodplain mapping, and in general flood management. The simulations of the hydraulic 

model are evaluated based on different sets of Manning coefficients and run accordingly. At each 

model run, the result is evaluated against the MODIS imagery of flood extent to meet the objective 
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function to minimize the error and be able to produce a representative flood extent map by trying all 

the possible solution and this exhaustive search is done for the Ribb and Gumara rivers.       

3.3. Model Validation (2006 Flood) 

Model validation is an essential part of the model development. It ensures that the model meets its 

intended requirements in terms of the methods employed and the results obtained. The ultimate goal 

of model validation is to make the model useful in the sense that the model addresses the right 

problem, provides accurate information about the system being modeled, and makes the model 

actually used. In general, the process is akin to developing a legal case in which a preponderance of 

the evidence is compiled about why the model is a valid one for its purported use. Accordingly, 

satellite imagery has also been found for the same year of a flood event, on a different day on the 

19th of August 2006, from MODIS. This imagery is used for a model validation process. 

Consequently, the area of the flood event was digitized (Fig.5) to compare with the model result of 

the flood event on the 19th of August 2006 using the same optimal parameter set used during the 

model calibration process. Therefore, this may increase the reliability of model prediction and 

revealed a good result with Nash & Sutcliffe coefficient (Ns) = 0.71 which was 0.76 during model 

calibration. Hence, this validation helps to a better understanding of the model’s capabilities,   

limitations, and appropriateness for addressing a range of important questions as well as in the case 

of models that contain elements of human decision making, validation becomes a matter of 

establishing credibility in the model. 

Figure 2: MAE of different combinations of Manning coefficient (a) and Parameter uncertainty of 

the model calibration process of the Gumara river (b) 
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4.  MATERIALS AND METHODS 

4.1.  Deterministic floodplain mapping   

The deterministic approach is the most commonly used method of assessing flood risk based on 

predicting the magnitude and extent of the 1- in 100-years or 200-years flood event. Though 

potentially very useful to engineers, this information can mislead planners and developers into 

assuming that areas outside these limits are risk-free and vice versa i.e. overestimating. This study 

presents an outline methodology and an operational framework for assessing floodplain mapping, 

and is analyzed and discussed by comparing deterministic and probabilistic approaches using 

hydrodynamic numerical solutions. In a deterministic approach, flood inundation maps show the 

flood extent without consideration of the inherent uncertainties associated with the modeling 

exercise. Where such information is lacking, inadequate, or simply ignored, and inappropriate 

development is allowed to take place within the floodplain, the consequences, sooner or later, are 

inevitable. Therefore, it is unknown how these uncertainties are transferred and propagated to the 

inundation map (Merwade, et al., 2008). In this research, the deterministic approach is achieved by 

using the uncertain measured flow data. And this data is calibrated with different possible sets of 

Manning’s n coefficient and finally took the model parameter with least MAE equal to 852m and 

highest Ns equal to 0.76.  Fig.4a illustrates the application of deterministic floodplain mapping to 

the 1-in-100 year flood inundation map at the Gumara river. But how reliable are estimates of return 

periods for such events when records of peak discharge are generally of much shorter duration when 

the climatic regime may be changing, and when catchment plays in developing improved procedures 

for flood risk assessment to support the planning process? In general, the deterministic approach is 

based on the assumption that the model fully represents the physical behavior of the river. In this 

particular case study, the deterministic approach is overestimating the flood area as compared to the 

evaluation criteria of MODIS flood event of 2006 and it also represents one blackish (Fig.4a) color 

which is not informative to give an area of priorities and emphasis. From the point of view of optimal 

design of engineering solutions, it is not an appropriate or more certain way of model evaluation. 

And this evaluation is done based on the uncertain data measured from the ground which was 

calibrated and validated against the uncertain satellite imagery of MODIS 2006. Therefore, this 

approach lacks the certainty of the model either by over or underestimating the model result. Because 

basically the design of engineering solutions implies maximum utility with list cost. And this 

approach doesn’t fit with this solution because of the highest uncertain data set in the area. 
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4.2. Probabilistic floodplain mapping 

This section describes a comprehensive way of describing the inherent risks or problems from all 

possible sources in describing the physics in a system. In particular, this study is dealing with the 

uncertainty-based approach to represent the floodplain mapping to the 1-in-100 year flood event at 

the Ribb and Gumara rivers. To achieve this approach in describing the hydraulic behavior of river 

and flood dynamics, simplified models are typically favored, as they consent to a large number of 

simulation runs to entirely explore the whole parameter space. As in the case of this study, HEC-

RAS model is used. In this study the ensemble simulation (Fig.3a) endeavors at evaluating and 

weighing the model performances when uncertainty is considered. And then the performance is 

weighed up by analyzing how inflow uncertainties propagate through the model. The basis for 

choosing inflow as the main source of uncertainty is that generally speaking, inflow is one of the 

most second important factors that affect hydraulic model results (Pappenberger, et al., 2007). The 

first most important factor typically is the Manning’s n on the channel and floodplain. In view of the 

fact that the influence of Manning’s n on channel and floodplain has been analyzed during model 

calibration and model validation, the second most important factor inflow data uncertainty is 

considered here. Moreover, the design flood is very uncertain since it is evaluated based on the 

measured data by statistical methods. At the very beginning, there are uncertainties in the measured 

data due to low measuring instruments accuracy, careless surveyors, lack of education, not 

understanding of data importance, etc. Following, there are also uncertainties in the statistical 

methods. Taken as a whole, the design flood uncertainty will be augmented by the two sources of 

uncertainties mentioned above. The ensemble simulation is performed (Fig.4a) using the HEC-RAS 

model calibrated and validated against the 2006 flood event. Hence, a Monte Carlo Simulation 

sampling technique (Fig.4a) based on the generalized likelihood uncertainty estimation (GLUE) 

framework is chosen as a tool to analyze uncertainty. For that reason, 200 inflow discharges are 

generated according to a normal distribution (Fig.4a). The normal distribution with lower and upper 

bounds is assumed to present the variation of inflow discharge. They are calculated by ± 20% and 

these 200 single-value discharges were fed as the upstream boundary condition for a steady-state 

ensemble simulation. Other configurations of the original model which have been calibrated against 

the 2006 flood event have remained the same. For both the Ribb and the Gumara model, 200 water 

profiles are simulated. Among the 200 simulated results, the water profiles of the 5th through 95th 

percentile results will be chosen for further analyses of their water profile. The model gives results 

in each cross-section (Fig4a). These are the 200 values of flood extent which are the results of each 
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simulation. These data sets are sorted from small to large and the first and last 5 values are 

eliminated. Thus, 90 values that represent 5% to 95% percentile are obtained where several 

parameter sets can turn out equally for good model predictions. The level of uncertainty in model 

predictions can also be controlled by rejecting poorer simulations (MS Horritt, 2006). The steps to 

produce the probabilistic maps that take account of the comprehensive nature of a system for proxy 

using HEC-RAS and GIS application are described below from 1 through 10. 

1. Set all outputs of hydrological models of the flood event of 2006, Q100, and scenarios under land-

use change 

2. Make a Monte Carlo simulation/sampling technique of each hydrological model result in step 1 

(Fig.4b)  

3. Feed the results of step 2 into the hydrodynamic model to make an ensemble simulation under 

input uncertainty.  

4. Compare the flood extent result of step 3 with the satellite imagery and evaluate the model 

performance (Mp) of each simulation. (Fig.5)  

𝑀𝑝 =
𝑀𝐴𝐸𝑚𝑖𝑛

𝑀𝐴𝐸
, 𝑖𝑓 𝑀𝐴𝐸 = 0 𝑡ℎ𝑒𝑛 𝑀𝑝 = 1        (1) 

             

Model performance 

Where MAE (min) is the flooded area predicted by the model with the minimum mean absolute error, 

MAE is the predicted mean absolute error of each simulation; Mp is the model performance to give 

weights for each run. After a large number of runs, different Model performances are obtained and 

their corresponding flood maps are produced. Before these maps were combined, each map has to 

be assigned weights that represent the likelihood. This approach is based on the generalized 

likelihood uncertainty estimation (GLUE) framework (Aronica,et al., 2002). This weight, Li, ranged 

from 0 to1, is formulated by the equation below: 

𝐿𝑖 = [
𝑀𝑝𝑖−min (𝑀𝑝𝑖)

𝑚𝑎𝑥 (𝑀𝑝𝑖)−𝑚𝑖𝑛 (𝑀𝑝𝑖)
]          (2) 

Model performance weight 

5. Give weights for each simulation based on step 4 (Fig. 4b). This will be an attribute to give higher 

weight (Li) to the best simulation/model performance of the ensemble simulation. Therefore, there 
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will not be an equal likelihood for the probabilistic map to be reproduced. After this, the weights are 

normalized (Lin) using the following formula.  

  

𝐿𝑖𝑛 = [
𝑀𝑝𝑖−min (𝑀𝑝𝑖)

𝑚𝑎𝑥 (𝑀𝑝𝑖)−𝑚𝑖𝑛 (𝑀𝑝𝑖)
] ∗ [

𝑛

∑ 𝑀𝑝𝑖
𝑛
𝑖=1

]         (3) 

 

Weight normalized 

Where Lin is normalized weights, max (Mpi) and min (Mpi) are the maximum and a minimum measure 

of fit found throughout the ensemble and n is several  simulations. It can be seen from the equation 

above that the bigger the measure of fit, which means the more accurate the prediction, the bigger 

the weight will be assigned to the simulation. After obtaining the weight for each simulation, the 

focus will be set on the flood situation for each cell, and the weighted average flood state for each 

cell will be made:   

𝐶𝑗 =
∑ 𝐿𝑖𝑛∗𝑊𝑖𝑗
𝑛
𝑖=1

∑ 𝐿𝑖𝑛
𝑛
𝑖=1

          (4) 

Weighted average for each cell 

Where Cj is an indication of weighted average flood state for jth cell, Wij is the flood situation for jth 

cell in simulation i, which is Wij = 0 for not been inundated and Wij = 1 for been inundated. And Cj 

is ranged from 0 to 1, which represents the likelihood of flood state of a particular cell for a typical 

flood event.  

6. Produce an inundation map for each ensemble simulation  

7. Reclassify the inundation maps in step 6 

8. Multiply each reclassified maps by their corresponding weight (Lin)  

9. Sum up all the maps in step 8 

10. Finally stretch all the summed up maps between 0 through 100 to make a probabilistic map of 

that particular event (Fig.5b). 

11. Repeat steps 1 through 10 to reproduce probabilistic maps of different land-use scenarios. 

The white grids present places which are least probable (dry) in this flood event, whereas black grids 

show places that have a high probability to be inundated (up to 100%). The more blackish the color 

the higher probability a grid will be inundated as shown in Fig. 5b.   
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5. RESULTS AND DISCUSSION 

In this particular study, the probabilistic approach gave a smaller area of inundation. This is basically 

because of the weights introduced for each 200 number of ensemble simulations used to illustrate 

the applicability of the probabilistic approach in improving the model performance by reducing the 

uncertainties and be able to produce 200 deterministic inundation maps of the 200 runs. After this, 

the 200 maps are multiplied by their corresponding weights, in this case, those poorer simulations 

with the weight equal to zero according to the formulas for model performance in this study are 

discarded. And other poorer simulations get lesser weights. Accordingly, they get less inundation 

area. Therefore, these inundation areas are based on the objective function set to evaluate model 

performance. As you can see in the flooded area of the two maps (fig5), you see the area which was 

fully inundated in the case of deterministic which was not observed from satellite imagery was 

discarded during the probabilistic approach. In general, the finding of this study is to show those 

areas which are highly probable to be flooded get blackish and vice versa. Then, the area of 

inundation of probabilistic approach to be higher or lesser than the deterministic depends on the 

model performance. In this case study, it looks to be lesser but still the whitish color might also be 

inundated but with less probability so, this tells which area should be more prioritized. Therefore, 

this approach is quite convincing from the point of view of engineering solutions in minimizing risk 

and cost-effectiveness.  

5.1.  Land use change scenarios 

Different factors affect runoff generation. One is the meteorological factor such as, rainfall intensity, 

rainfall amount, rainfall duration, and distribution over the drainage basin, the direction of storm 

movement, and secondly, are climatic conditions that affect evapotranspiration such as temperature, 

wind, relative humidity, and so on.  Thirdly is the physical characteristics that affect the runoff 

generation,  based on vegetation cover, soil type, drainage area, basin shape, elevation, topography,  

drainage network patterns, ponds, lakes, reservoirs, sinks, in the basin which prevent or delay runoff 

from continuing downstream. In addition to this, human activities can also greatly contribute to the 

runoff generation as part of land-use change. As the number of human inhabitant increases the 

interventions also increase, and as more development and urbanization occurs, most of the natural 

landscape is replaced by impervious surfaces such as houses, roads that reduce infiltration into the 

ground and accelerate runoff to the ditches and streams. Accordingly, the following different 

scenarios of land-use change are developed to see the effect of land-use change in the study area 
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(Table 1). This study also aims at reproducing the probabilistic inundation maps under land-use 

change. These are the flow results under adaptation to the environment for Q100 via the SWAT 

modeling system. To this end, a Monte Carlo sampling technique is used to sample 200 normal 

distributed values ±20% peak flow of each scenario. This is the same as the technique used before 

the Land-use update (LUP). And these all are set as an upstream boundary condition to perform 

simulations under different adaptation options. The following Table1 shows the targets set for each 

scenario as well as the result of model simulation under adaptation to the environment or land-use 

change. Figure 3 below shows sample flow results under the adaptation option of scenario B of the 

Gumara River. As Figure 3 shows the expansion of dry land in the basin that takes place according 

to scenario B resulted in substantial increases in the mean monthly discharge of around 40% for wet 

months while during the summer discharge decreased up to 35%.This adaptation option possibly to 

happen if the likelihood of land-use change is happening in the area. Therefore, this land-use change 

can be also tuned for further study to any other options or proposals of governmental bodies.  

 

 

Figure 3: Extremes ranking independently 
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Tabel-1 Land use change evaluation criteria and scenario result 

 

Figure 4: the normalized weights according to the model performance (c) of the ensemble simulation 

of the normal distribution of flow uncertainties (b) so as to produce the probabilistic map of the study 

area that enables to capture the uncertainties associated with the input data (a) 

Percentage of Area Change for Every 

Land Use% 

scenarios results 

Scenarios Description Ribb river Gumara river 

Q100 

before 

LUP 

Q100 

Peaking 

factor 

Q100 

after 

LUP 

Q100 

before 

LUP 

Q100 

Peaking 

factor 

Q100 

after 

LUP 

A Expansion of agricultural 

land by 20% 

305 1.8 555 574 1.3 746 

B Expansion of dry land by 

20% 

305 1.6 488 574 1.2 689 

C Expansion of urban land by 

20% 

305 2.4 730 574 1.9 1090 
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Figure 5: Comparisons of the deterministic (a) and probabilistic (b) floodplain maps of Q100 of 

the Gumara River  

Application of the complementary procedures for floodplain mapping to the same test site 

enables a decisive dialogue about the merits and demerits of deterministic and probabilistic 

approaches to deriving flood extent maps. Hypothetically visualizing flood hazard in a 

probabilistic base is more apt than deterministic, since deterministic predictions of inundation 

extents and design floods, which use the solitary unsurpassed fit model and best estimate peak 

discharge, might misrepresent the uncertainty and reduce the reliability in the modeling process 

and give a spuriously accurate result (K.J. Beven and Freer, 2001; Bates, 2004; K. Beven, 

2006). Basically, the idea of a deterministic approach is according to the analogous once the 

hydraulic model is calibrated and/or validated using historical data, then it can produce a 

correct flood map of different magnitude. However, this consensus is very questionable. In 

actuality, quite a lot of studies such as (Aronica, et al., 1998; M. S. Horritt and Bates, 

2002;Romanowicz and Beven, 2003; M. S. Horritt, et al., 2007; Di Baldassarre, et al., 2009b) 

have shown that flood inundation models are not necessarily much up with their objectives to 

give good predictions when they are evaluated against flood events different from those used 

in a calibration process. Therefore, a flood inundation model, calibrated on a historical event, 

may give a poor forecast of a synthetic design event. In contrast, probabilistic approaches have 
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a high possibility to give a better forecast, as they assume the use of multiple behavioral models 

in the forecast, rather than a single best-fit model (Bates, 2004; Stephens, et al., 2012)(Fig.5). 

This work has limitations for not using flood marks ground data which is not common in 

Ethiopia. So, if such data are used a better result will be expected. And, such an approach is 

recommended for further studies.   

6.  CONCLUSIONS  

Flooding is a serious issue in the study area where it happens almost every year. The current 

climate and land-use changes seem to have also played some role in the frequency of flooding 

in the area. One of the main tasks of this study was to evaluate how important/useful are the 

globally and freely available remote sensing data (SRTM, MODIS) in developing countries. 

The application of SRTM DTM with HEC-RAS, HEC-GeoRAS, and GIS for producing a 

probabilistic map was found to be a good and time-saving technique for the reason that 

simulations in HEC-RAS is very fast and the overall MAE is decreased from 852m of 

deterministic to 702m and Ns from 0.76 to 0.86 of the probabilistic approach. This is because 

the weights given to each simulation under uncertainty of input data set (Fig.5). Thus, it 

discarded those poorer simulations of their performance. This can be visualized from Fig.5. 

Furthermore, this approach has significant relevance in giving information for decision makers 

to give more emphasis and priorities for highly susceptible areas of flooding. This is because 

of the uncertainty-based approach of weighting each simulation.  

Furthermore, this study also indicated that seasonality (wet and dry seasons), special 

distributions of rainfall, and soil and land cover heterogeneity are a source of errors in 

hydrological models. Therefore, this analogous may lead to the significance of developing a 

seasonal parameterization technique of model building. Thus, each simulation of the year is 

divided into two and then two parameter sets are obtained for each dry and wet period.  

After the development of a well-calibrated SWAT model which produced a reasonably good 

performance (Ns up to 0.75) taking into account the concept of the distributed model during 

the simulation period.  To this end, a new land-use update was performed. The new module 

introduced in SWAT 2009 achieved this new land use update. While doing this, the percentage 

difference of the discharge response before and after the land use update of the specific date 

was assumed as the percentage increase or decrease of the flood frequency analyses. Therefore, 
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if the current land use is changed to the new updated one then the discharge of Q100 of the flood 

frequency is multiplied by a factor (found by comparing simulations before and after land-use 

change) and these reproduces a new Q100 for that specific land use (scenario) and see its effect 

via floodplain maps. 

In general, flood risk mitigation is vital in developing countries. In the case of Ethiopia, 

reducing flood risk is dependent upon alleviating poverty, and vice versa. Lack of food reduces 

human beings' competence to cope with disasters, stresses, and shocks. In addition to this, it 

means that unnecessary costs are not invested in areas with less probability of flood exceedance 

and vice versa. Hence, this research will contribute to the efforts being undertaken in the 

country for achieving the disaster prevention and protection policy of the government in 

Ethiopia and as a tool for the developing countries with data-scarce environment.    
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