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ABSTRACT  

A correct and timely land use/land cover (LULC) classification provides indispensable information for the effective 

management of environmental and natural resources.  However, earlier studies mapped the LULC map of Bilate Sub-basin 

using remote sensing images that were acquired for a single season. Hence, these studies did not consider the seasonal 

effects on the accuracy of LULC classification. Therefore, the objective of this study was to evaluate changes in 

classification accuracy for images acquired during wet and dry seasons in the Bilate Sub-basin. LULC of the study area 

was classified using the Landsat 8 satellite imageries. Based on field observations, we classified the LULC of the study 

area into 9 dominant classes. The classification for the two seasons resulted in a noticeable difference between the LULC 

composition of the study area because of seasonal differences in the classification accuracy. The overall accuracy of the 

LULC maps was 80%for the wet season and 90% for the dry season with Kappa coefficient values of 0.8 and 0.9 

respectively. Therefore, the two seasons showed a significant difference in the overall accuracy of the classification. 

However, we discovered that when the classification accuracy was tested locally, that is for individual pixels, the results 

were not the same. In Bilate Sub-basin, several pixels (14.71%) were assigned to different LULC classes on the two seasons 

maps while 85.29% of the LULC classes remained unaltered in the two maps. According to the classification results, the 

season had a noticeable effect on the accuracy of LULC classification. This suggests that for LULC classification, multi-

temporal images should be used rather than a single remote sensing image. 
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1. INTRODUCTION  

A correct and timely land use/land cover (LULC) classification provides indispensable information for 

the effective management of environmental and natural resources. The accuracy of LULC mapping is 

strongly reliant on the quality of the input information. The main inputs for LULC classification include 

freely accessible Landsat 8 satellite image and Ground Control Points (GCPs). The presence of clouds, 

rainy weather, shadows, and illumination in images can cause difficulties for remote sensing 

applications of LULC classification accuracy (Hereher et al., 2012), and change detection (Mas and 

González, 2015). In areas where rainfed crop production is dominant, cultivated land can be classified 

as  bare land in the dry season. Grassland may also appear as bare land in the dry season.  Such problems 

can be overcome by using multi-seasonal data instead of single-season data for LULC mapping (Heinl 

and Tappeiner 2012; Clark 2017). However, most studies prepare LULC maps using images that are 

acquired in single-season (Priyakant et al., 2012).   

The reported accuracy of LULC classification in the literature usually ranges from 50 to 95% (Yu et 

al., 2006; Castillejo-González et al., 2009 and Myint et al., 2011). Increased accuracy can be achieved 

by improving the quality of the reference data (i.e. GCPs). For instance, Platt and Rapoza (2008) 

improved the overall classification accuracy from 64% to 78% by using expert- based knowledge. 

Several other studies also indicated that the classification accuracy could be improved by the proper 

size of the training dataset (Zhuang et al., 1994; Foody & Arora, 1997; Foody & Mathur, 2004a;) and 

using the best classification algorithm (Castillejo-González et al., 2009). Researchers also 

demonstrated that the classification errors could be reduced using all-weather, day-and-night imaging, 

as well as canopy penetration and high spatial resolution digital airborne imagery (Yu et al., 2006). 

Classification accuracy shows temporal variation because of seasonal variations in spectral 

characteristics of different LULC classes (Schriever and Congalton, 1995). Hence, minimizing 

classification errors because of these seasonal effects was central for generating precise LULC maps. 

However, earlier studies used images for the single date (mostly in the dry season) which were 

arbitrarily selected for LULC classification (Priyakant et al., 2012).  Rodriguez-Galiano et al. (2012) 

revealed that the classification of seasonal features such as crops could be highly accurate if the 

information was extracted from multi-seasonal instead of mono-seasonal satellite images. Similarly, 

Löw et al. (2013) reported an increase in classification accuracy by up to 4.3% as a result of using the 
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most important features from multi-season images. Several studies were published on LULC 

classification in many parts of Ethiopia (Wagesho & Goel, 2013; Estifanos and Gebremariam, 2019; 

Degife et al., 2019; Dibaba et al., 2020). However, these earlier studies used mono-season images for 

the classification (Estifanos and Gebremariam, 2019; Dibaba et al., 2020) while ignoring the seasonal 

effects on spectral responses of LULC features. As a result, the studies reported overall classification 

accuracy of less than 85% (Yan et al., 2006; Platt and Rapoza, 2008) and did not attempt to improve 

the accuracy using multi-season (multi-temporal) information from satellite images. This limitation 

was also observed in Wagesho & Goel (2013) and (Sendabo, 2007) whose studies focused on Bilate 

Sub-basin.  

In this study, the Landsat-8 imageries acquired in the dry and wet seasons were used to evaluate the 

classification errors because of seasonal differences in spectral responses. The findings of this study 

will contribute to measuring the magnitude of the existing LULC classification and it is a critical step 

that should be considered in the environmental protection strategy and sustainable resource 

management of basins. For the Bilate Sub-basin, such study is crucial and urgent considering the 

increasing and alarming intensity of anthropogenic activities in the landscape, and the need for 

implementing environmental protection policies in the basin. Therefore, the overall objectives of this 

study were to map the recent LULC and examine the impact of seasonality on the classification 

accuracy in Bilate Sub-basin, Abaya-Chamo Basin, Rift Valley Basin of Ethiopia.    

 

2. STUDY AREA AND DATA SETS    

2.1 Description of the study area  

The Bilate Sub-basin lies between 37047’14’’ to 38020’14’’ E Longitude and 6033’18’’ to 806’57’’N 

Latitudes. Bilate is among the major catchments of the Abaya-Chamo Sub-basin, which is part of the 

Rift Valley Lakes Basin. Guracha River, Guder River, and Weira River are tributaries of the Bilate 

River. These rivers join after passing the swampy Boyo Lake and named as Bilate River which drains 

to Lake Abaya. The Bilate Sub-basin covers an area of about 5330 km2 at the gauging station at Bilate 

Tena with an elongated shape that stretches in the north-south direction (Wagesho & Goel, 2013). The 

altitude in the sub-basin ranges from 1,170 m.a.s.l. in the southern part up to 3,285 m.a.s.l.  in the north. 
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Humid and semi-arid climatic conditions characterize the Bilate Sub-basin. It has a bimodal rainfall 

pattern with major rainfall during the summer monsoon season. The average annual rainfall variability 

is linearly correlated to the altitude in the catchment (Wagesho & Goel, 2013). Expansion of 

agricultural lands, cattle grazing, and timbering substantially reduced the vegetation cover in the 

watershed (Wagesho & Goel, 2013).   

Deep gullies and massive bare soil at the upstream part of Bilate River Watershed shows its 

vulnerability to erosion hazard. The entire watershed practices a mixed cropping pattern where the 

middle and the lower watershed utilizes irrigation to grow commercial crops such as tobacco and maize 

(Wagesho, 2014). Currently, the demand for irrigation water is increasing and small-scale communal 

and medium-scale private investors are under the urgent course of water demand (Wagesho, 2014).   

 

 

 Figure 1. Location and elevation map of the Bilate sub-basin 



Alemeshet et al. /EJWST. Volume:3:23-50 /2020 (ISSN: 2220 – 7643) 

  27 

2.2 Data Sets   

In this study, both primary and secondary data were used. The primary data was collected by (i) a 

reconnaissance survey to identify key features of the catchment including the existing irrigated area, 

and (ii) an extensive field survey for the collection of Ground Control Points (GCPs) for image 

classification and geo-referencing. To better understand the temporal variations of LULC, local 

residents were surveyed. 

The secondary data includes the Landsat 8 satellite imageries of 05-May-2018 and 12-May-2018 and 

07-January-2019 and 16-January-2019 which were downloaded from the earth explorer data repository 

of the United States Geological Survey (USGS). As shown in Table1, three Landsat 8 spectral bands 

(bands 4,3, and2) were layer stacked to form one complete image with all bands to aid the interpreter 

in understanding all features in the study field. 

Table 1. Description of the Landsat 8 images used in this study   

Acquisition Date 

 

Path/Row 

 

Season  Spatial 

resolution(m) 

 Bands used 

(true colors) 

05-May-18 168/055 Wet 

 

30 4,3, and 2 

05-May-18 168/056 

12-May-18 169/054 

12-May-18 169/055 

16-Jan-19 168/055 Dry 

 

30 4,3, and 2 

16-Jan-19 168/056 

07-Jan-19 169/054 

07-Jan-19 169/055 

 

3. MATERIALS AND METHODS 

3.1 Mapping LU/LC     

The Landsat 8 imageries of May-2018 and January-2019 were processed using ArcMap 10.3. Since 

Bilate Sub-basin covers a large area, four scenes of Landsat were mosaiced for both seasons.    
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The state of the atmosphere affects the qualities of images conspicuously, practically in the visible 

bands. Thus, removing the atmospheric effects has become a key step to improve the qualities of the 

images and to retrieve the actual reflectivity of surface features. First, the digital numbers (DN) are 

converted into the meaningful top of atmosphere (TOA) reflectance.  

Next TOA reflectance was converted into surface reflectance by undertaking atmospheric correction. 

Also, georeferencing was done using 12 GCPs that were taken at road junctions, the bridge, and distinct 

river bends. These GCPs are fairly distributed over the upper, lower, and middle parts of the catchment.  

It is highly recommended to use an average root mean squared error (RMSE) value below 1.0 pixel as 

a target to accept the results of the georeferencing (Yesuf et al., 2015). We were able to attain this 

target by using only nine of the twelve GCPs. All the maps were projected to a Universal Transverse 

Mercator (UTM) coordinate system, Datum WGS 1984, zone 37 North of the study area. 

In this study, the Maximum Likelihood (ML) algorithm was used for the supervised classification of 

the multi-temporal images. ML is a widely accepted classification method because of its robustness 

and simplicity for LULC classification (Lillesand and Kiefer, 2000; Degife et al., 2019; Dibaba et al., 

2020). The classifier determines the probability that a pixel belongs to each class and then assigns the 

pixel to the class with the highest probability (Richards and Jia, 1999).     

Field observation was carried out based on checklists designed in advance to collect GCPs for the 

LULC in the sub-basin. With the aid of field observation, nine major LULC units were identified for 

the study area Bilate Sub-basin as shown in Table 2.  
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Table 2. LULC types in Bilate Sub-basin and their descriptions, classification system description 

(adapted and modified from Kebede (2009); Mengistu (2009); Gedle (2018)) 

Land Cover  Sub – category and description Ground control 

points (GCPs) 
Sub – category Description 

Forest 

 

✓ Dense forest 

(70-100%) 

Individual plants 

are overlapping or 

slightly separated 

or touched. 

✓ Moderate 

forest (30-

69%) 

Individual plants 

are clearly 

separated or 

rarely touching 

✓ Sparse forest 

(<30%) 

Individual plants 

are well separated 

and it is 

dominated by 

other species like 

shrubs and 

grasses 

 

 

✓ Thick vegetation stands of grooves 

of evergreen and deciduous trees 

forming a dense canopy. It is 

predominantly covered by a tree 

(>5m high) with a single stem or 

branches well above the base 

✓ Deciduous forest land 

Areas having a predominance of tree 

that lose their leaves at the beginning 

of a dry season 

✓ Evergreen forest land 

Trees which predominantly remain 

green throughout the year. 

✓ Mixed Forest land 

Areas where both evergreen and 

deciduous trees are growing and 

neither predominating.  

Moderate forest 

(Acacia) 
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Land Cover Sub – category and description Ground control 

points (GCPs) 

Sub – category      Description  

Agriculture ✓ This category includes areas for the production of 

adapted crops for harvest, both annuals and perennials, 

and the scattered rural settlements that are closely 

associated with the cultivated fields. 

✓ It includes areas currently under crop, fallow and land 

under preparation. 

which are: Irrigated agriculture and Rain fed agriculture 

✓ Annual crop land: - complete their life cycle in one 

season and then die.  

✓ Perennial crop land: - Are crops that are alive year-

round and are harvested multiple times before dying.  

 

Rain-fed 

agriculture 

  

✓ The Period from April to October  

✓ Annual crop land  

Maize, Tobacco, Local and Sweet 

potato, Wheat, Beans, Cotton, 

Barely, Teff, Sorghum, oil seeds etc 

✓ Perennial crop land 

Sugarcane, Banana, Coffee, Enset, 

Chat etc 

Banana, Bean, 

Tobacco, 

Maize, Potato, 

Cotton, Chat, 

Teff, Wheat, 

Enset (False 

banana)  

Irrigated 

agriculture 

✓ The Period from November to 

March 

✓ Annual crop land  

Maize, Tobacco, Wheat, Beans, 

Cotton, onion, local and sweet potato, 

oil seeds etc 

✓ perennial crop land 

Sugarcane, Banana, Coffee, Enset, 

Chat etc 

Banana, Bean 

Tobacco, 

Maize, Potato, 

Cotton, Chat, 

Teff, Wheat, 

Enset (False 

banana) 
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Land Cover Sub – category and description Ground control 

points (GCPs 

 Sub – category                                 Description 

Shrubs Dense shrub ✓ Area covered by small trees, 

bushes, and shrubs mixed with 

grasses 

Shrubs mixed 

with grasses 

Sparse/open 

shrubs 

✓ Mixed with trees, mixed with 

grass, Mixed with a bare ground 

Mixed with a 

scattered tree,   

Grass Grass land 

 

✓ Open grass land, Closed grass 

land, mixed with a tree, Mixed 

with shrubs. 

Mixed with shrub 

and tree, Open 

grass, Mixed with 

scattered tree   

Eucalyptus 
A Fast-growing evergreen tree native to Australia. Moderate, Dense, 

Sparce   

Settlement Residential, Commercial and service, Industrial, Public 

administration, Buildings, Paved Roads 

Asphalt, 

Building, Bridge  

 

Water body Inland water bodies, Inland running water (streams & 

water channels) Inland wetlands, wetlands 

Stream, Lake, 

Pond  

Cultivated 

land 

That is a type of ground, land, soil not sawn for one or more 

growing seasons and it is land used for planting crops, 

usually land with fertile soil and access to sufficient water 

for irrigation. 

Cultivated land 

Other Land Gravel Roads, Bare soils, Bare rocks Quarry, Gravel rocks Bare rocks, 

Quarry, Local 

house, Bare soil  
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The quantity, distribution, and accuracy of GCPs play an important role in training image classification 

algorithms. In this, the number of sample points was calculated using the equation based on the 

binomial probability theory. The Cochran Model allows calculating an ideal sample size given a desired 

level of precision, desired confidence level, and the estimated proportion of the attribute present in the 

population (Congalton, 1991; Foody, 2006). The equation reads: 

N = 
Z2pq

E2
                                                                                                                                          (1)                                                                                                     

where: N is the sample size, E is the desired level of precision (i.e. the margin of error), p is the 

(estimated) proportion of the population that has the attribute in question, q is 1 – p, and Z is z-score.   

In this study, the minimum sampling size is estimated for Z=1.96, p=85%, q=15%, and E=4%. This 

resulted in a minimum sample size (N) =319 according to equation (1). Therefore, we decided to collect 

470 GCPs for each season.       

The traditional climate zone classification of Ethiopia is based on altitude and temperature. Based on 

such classification, there are five climate zones: Wurchi (cold climate at more than 3000m altitudes), 

Dega (temperate like climate-highland with 2500-3000m altitudes), Weynadega (Warm climate with 

1500-2500m altitude), Kola (Hot and arid type with less than 1500m altitudes) and Bereha (hot and 

hyper-arid type) climate (NMA, 2001). According to this classification, the majority part of the study 

area falls under Weynadega and Kola (Figure 2) but there is also fairly large coverage of other zones. 

Thus, the GCPs were collected from each of the dominant climate zones of the study area (Figure 2) 

whereas their spatial distribution was mainly determined by site accessibility. We made sure that the 

sampled areas had a heterogeneous land cover so that they could represent the entire catchment. 470 

GCPs were collected twice, i.e., for the wet season (May-2018) and dry season (January-2019).   

 

 

http://www.statisticshowto.com/confidence-level/
http://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/margin-of-error/
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Figure 2. Distribution of the GCPs over the climate zones of Bilate Sub-basin. 

Out of the total 470 GCPs, 80% (376 GCPs) were used for training the classification algorithm whereas 

20 % (94 GCPs) were used for validation of the classified image.  

3.2 Classification accuracy assessment  

Accuracy assessment is an important step in remote sensing to verify the fitness of classification 

products. The most common way to assess the accuracy of a classified map is to create a set of random 

points from the ground truth data and compare that to the classified data in a confusion matrix. In this 

study, out of 470 GCP’s 20 % (94 GCP’s) were selected randomly to serve as reference (validation) 

data for the accuracy assessment. The confusion matrix is used to calculate the accuracy metrics, which 

are overall accuracy, omission, commission, and kappa coefficient. 

The overall accuracy was calculated by summing the number of pixels classified correctly and dividing 

them by the total number of pixels.  Thus, it showed what proportion of the reference sites (GCPs) were 

mapped correctly. The overall accuracy was usually expressed in percentages, with 100% accuracy 

being a perfect classification whereas >85% was considered as an acceptable level of accuracy (Gashaw 
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et al., 2017). The diagonal elements of the confusion matrix represented the pixels that were correctly 

classified.  

The confusion matrix was also used to assess the accuracy of the user and that of the producer. The 

accuracy of the user refers to the probability that class I remains the same on the ground in a classified 

image (reference data). The use of values across rows for each class was estimated in the confusion 

matrix and the correct classifications were added together and divided by the total number of classified 

pixels for each class.  

The accuracy of the producer was the likelihood that the class j in the classified image would be mapped 

on the ground (reference) as the same class. For each class, producer accuracy was determined by going 

down the columns and adding the correct classifications together, and dividing them by the total 

number of reference sites for each class. 

Omission applies to the reference data left out (omitted) in the secret map of the correct class. For each 

class, Omission is determined by going down the columns and adding the wrong classification together, 

and dividing it by the total number of reference sites for each class. 

The Commission refers to pixels listed as reference sites that have been left out of the classified class 

map. For each class, Commission is determined by passing through the rows and adding the wrong 

classification, and dividing it by the total number of classified places for each class. 

We used the Kappa coefficient to evaluate the agreement between the classified map and the reality on 

the ground (Cohen, 1960).The Kappa coefficient of 0 indicated an absolute disagreement between the 

map and the truth, and 1 indicated complete agreement.  

The equation for the Kappa coefficient (κ) reads as follows.    

 κ=
𝑃𝑜−𝑃𝑐

1−𝑃𝑐
                                                                                                                                         (2)          

Where:  𝑃𝑜=∑𝑃𝑖𝑖 is the sum of relative frequency in the diagonal of the actual error matrix, and  𝑃𝑐= 

∑𝑃𝑖+𝑃+𝑗 is the relative frequency of a random allocation of observations to the cells chance agreement. 

The notations “i+” and “+j” stand for the relative marginal frequencies. When Kappa value is greater 

than 0.80, it shows a good classification performance; however, the values between 0.40 and 0.80 
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indicate moderate classification performance; and When the Kappa values fall below 0.40, it indicates 

poor classification performance (Lillesand et al., 2004; Jensen, 2005).  

The analysis of the difference in the study area using ArcMap 10.3 resulted in a pixel over pixel-based 

classification comparison of Landsat 8, the wet season and dry season LULC classification image. 

4. RESULTS AND DISCUSSION 

4.1 Classification accuracy matrixes  

Multi-temporal (wet and dry) season images were used to examine the impact of seasonality on the 

LULC classification accuracy. The average cloud coverage for wet season images is 16.5 percent and 

0.78 percent for the dry season. Due to the reduced availability of cloud-free images in the rainy season 

compared to the dry season, all images for the wet season have been masked and atmospherically 

corrected. The data suggested that the classification results were more accurate during the dry season 

than the wet season. The highest classification accuracy was provided by a cloud-free image of January-

2019, which referred to the dry season. In contrast, the image on May-2018, which stood for the wet 

season, showed the lowest accuracy.  

Table 3 showed the classification accuracy of the LULC maps for the dry and wet seasons. The results 

of the dry season classification were better than the wet season in terms of overall accuracy and kappa 

coefficient measurements.  

The overall accuracy was 80% for the wet season map and 90% for the dry season map. This indicated 

the presence of variations in classification accuracy with images taken in different seasons. The dry 

season map had a very good overall accuracy but the overall accuracy of the wet season map was not 

acceptable (<85%). This suggested that the map was unfit for other applications. This was supported 

by the values of the Kappa coefficient that indicated the reliability of the result. The Kappa coefficients 

were 0.8 and 0.9 for the dry and wet seasons, respectively (Lillesand et al., 2004; Jensen, 2005).   
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Table 3. Accuracy assessments of LULC classes  

The availability of cloud-free images was limited in the wet season in comparison to the dry season. 

Table 4 showed that the classifications of dry season images produced the highest classification 
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Settlement 9 0 0 0 0 0 0 1 1 11 75.0 

0.8 

Water 

body 1 14 0 0 0 0 0 0 0 15 93.3 

Perennial 

crops 0 0 3 0 0 1 0 0 0 4 75.0 

Eucalyptus 0 0 0 5 0 0 1 0 1 7 83.3 

Shrub 0 0 0 0 9 0 2 0 1 12 90.0 

Cultivated 

land 0 0 0 0 0 4 0 0 0 5 66.7 

Grass 1 1 0 0 0 0 15 0 0 17 83.3 

Bare Land 1 0 0 1 0 1 0 11 0 14 84.6 

Annual 

crops 1 0 1 0 1 0 0 1 7 10 70.0 

Total  13 15 4 6 10 6 18 13 10 95   

Producers 

Accuracy 81.8 93.3 75.0 71.4 75.0 80.0 88.2 78.6 70.0     

Overall 

accuracy 0.8 

  

 

D
ry

 s
ea

so
n

 

Settlement 10 0 0 0 0 0 0 1 1 12 83.3 

0.9 

 

 

 

 
 

Water 

body 1 11 0 0 0 0 0 0 0 12 91.7 

Perennial 

crops 0 0 4 0 0 0 0 0 0 4 80.0 

Eucalyptus 0 0 0 5 0 0 0 0 1 6 83.3 

Shrub 0 0 0 0 8 0 1 0 1 10 88.9 

Cultivated 

land 0 0 0 0 0 5 0 0 0 5 83.3 

Grass 1 1 0 0 0 0 14 0 0 16 93.3 

Bare Land 0 0 0 1 0 1 0 16 0 18 88.9 

Annual 

crops 0 0 1 0 1 0 0 1 8 11 72.7 

Total  12 12 5 6 9 6 15 18 11 94   

Producers 

Accuracy 83.3 91.7 100.0 83.3 80.0 100.0 87.5 88.9 72.7     

Overall 

accuracy 
0.9  
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accuracy whereas, the wet season image showed the lowest accuracy or produced higher errors 

(commission and omission).  

The cultivated land in the wet season had a 20% commission error and 33.3% omission error (Table 

4). However, during the dry season, cultivated land commission and omission errors decreased to 0.0 

percent and 16.7 percent in January-2019. Again, the commission error in the dry season was 

significantly smaller than that of the wet season for perennial crops.  According to the classification 

accuracy results, the season effect on the commission and omission errors was pronounced for all 

LULC classes.   

Table 4. Accuracy assessments of LULC classes 

LULC class 
Wet season (May-2018) Dry season (January-2019) 

Commission Omission Commission Omission 

Settlement 18.18 25.0 16.67 16.7 

Water body 6.67 6.7 8.33 8.3 

Perennial crops 25.00 25.0 0.00 20.0 

Eucalyptus 28.57 16.7 16.67 16.7 

Shrub 25.00 10.0 20.00 11.1 

Cultivated land 20.00 33.3 0.00 16.7 

Grass 11.76 16.7 12.50 6.7 

Bare land  21.43 15.4 11.11 11.1 

Annual crops 30.00 30.0 27.27 27.3 

4.2 LULC classification system  

We prepared LULC maps of the dry and wet seasons for Bilate Sub-basin (Figure 3). In this study, the 

LULC classification was categorized into nine dominant LULC classes: settlement (SE), water body 

(WB), perennial crops (PC), eucalyptus (EU), shrub (SH), cultivated land (CL), grass (GR), bare land 

(BL) and annual crops (AC). Similar to the topographic and climatic variation in the Bilate Sub-basin, 

there was a distinct North to South and West to East gradient in the spatial variation of the LULC 

classes.  
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The cross-section from North to South showed that the Bilate Sub-basin was mostly in a steep slope 

almost up to the river's mouth. Besides, the cross-section from West to East showed the diversity of 

topography and steepness. Besides, the climatic condition showed variations depending on the 

agroecology and the altitude (Sendabo, 2007).  

The purpose of this study was to map LULC and observe the effect of seasonality on classification 

accuracy. Therefore, the wet season map showed that: the northern part was dominantly covered by 

eucalyptus plantation, perennial crops, and grassland. In the middle part of the catchment, the 

eucalyptus tree was dominant over the western part whereas the eastern part was mostly covered with 

annual crops with some bare land and grassland. The most downstream (southern) part of the catchment 

was mostly grassland, annual crops cultivated land, and bare land.  

Overall, it seemed that there was no significant difference between the two maps in terms of the spatial 

pattern of LULC classes. However, a closer inspection of the maps showed that there was some clear 

difference. Depending on the landscape and topography of the sub-basin over the northern part, 

eucalyptus trees and grassland were more prominent in the wet season than in the dry season map. 

During the rainy season, the annual crop was grown in the middle-eastern portion of the sub-basin. 

However, it was missing in the dry season map as expected.  

This suggested that the dry season map underestimated the size of the cultivated land. There was also 

some difference between the two maps in the downstream part of the sub-basin. In the dry season, the 

image would be within the irrigation period (November to March). Because of the intensive irrigation, 

the field coverage of annual and perennial crops was greater in the dry season. 

 

 

 



Alemeshet et al. /EJWST. Volume:3:23-50 /2020 (ISSN: 2220 – 7643) 

  39 

 

Figure 3. LULC maps based on classification of Landsat 8 images of May-2018 and January-2019. 

The seasonal effect on the area covered by LULC class was evaluated by comparing the area extracted 

from the dry and wet season maps of the study area. The wet season map was considered the base map. 

The area difference in LULC change between the dry and wet season maps was shown in Table 5.  

The highest percentage difference between the two maps was obtained from the water body and bare 

land. The water body was reduced by 35% and bare land was increased by 35% in the dry season map 

as compared to that on the wet season map. Except for the seasonal effect, the direction of these 

differences was predicted, but the magnitudes are enormous. In addition, the extent of grassland and 

annual crops varies greatly between the two maps. The extents of grassland and annual crops also show 

a significant difference in the two maps. The area of the settlement and perennial crops remained the 

same in the two maps. The eucalyptus cover decreased in the dry season. This could be attributed to 

either the classification error or people cutting the tree. Local residents were interviewed to gain a better 

understanding of the insignificant temporal variations in annual crops. They stated that farmers did not 

irrigate large areas in the dry season of 2019 because of fuel shortage for the water pump. Hence, the 



Alemeshet et al. /EJWST. Volume:3:23-50 /2020 (ISSN: 2220 – 7643) 

  40 

difference in annual crop coverage was different in the two maps owing to classification error or 

decrease in irrigation as the cultivated area was classified as bare land in the dry season.  

Table 5. Comparison of the area covered by each LULC class on the dry and wet season maps 

LULC Area (km2) 

LULC class Wet season Dry season Difference (%) 

Settlements  509.06 509.08 0.00 

Water body  74.05 54.83 -35.05 

Perennial crops  620.68 620.15 -0.09 

Eucalyptus  1018.89 940.95 -8.28 

Shrub 476.24 445.67 -6.86 

Cultivated land  673.46 750.88 10.31 

Grass 964.34 791.45 -21.84 

Bare land  566.04 881.65 35.80 

Annual crops  447.07 354.70 -26.04 

Total  5349.35 5349.35  

4.3 Temporal analysis of LULC   

Figure 4 showed the location of changed and unchanged areas, highlighted with different colors. Only 

changed areas were used to visualize the overall dynamics. Differences were observed between wet 

and dry seasons; significant losses were noticed in the grass, annual crop, eucalyptus, shrub, and water 

body, whereas gain was observed in bare land and cultivated land. Grassland, shrubs, annual crops, and 

water body at the middle, lower and upper parts of the Bilate Sub-basin were changed to cultivated and 

bare land in the dry season.   
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Figure 4. The difference in LULC in Bilate Sub-basin based on classification using images of dry and 

wet seasons.  

Along with LULC differences, a land-use conversion matrix was used to depict which land use classes 

were converted very rapidly to other land uses (Table 6). In the matrix, the diagonal values represented 

the proportion of land use that remained unchanged during the wet-dry seasons. In Bilate Sub-basin, 

14.71% of the total land area under different land-use categories were converted from one category of 

land use to another category while the remaining 85.29% was unaltered. Among various types of LULC 

classes, the grass was mostly converted to other land uses. In between the wet and dry seasons, about 

5% of the area was converted from bare land to cultivated land, followed by 3.1% in the grass, 1.2% 

in the annual crop, and 2% in shrub areas.   
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Table 6. The LULC classes difference matrix from wet to dry season  
L

U
L

C
 w

et
 s

e
a

so
n

 

LULC dry season 

LULC Class AC BL CL  EU GR PC SE SH WB 

AC 0.10 1.20 0.70 1.30 0.00 2.20 0.60 0.60 0.00 

BL 2.40 0.00 0.10 4.00 2.10 3.10 2.30 4.00 0.80 

CL 2.80 5.00 1.00 2.20 2.30 1.10 1.50 1.40 0.00 

EU 0.20 0.10 3.10 0.10 5.00 5.00 2.60 1.40 0.00 

GR 0.50 3.10 3.80 1.70 0.20 0.60 3.10 1.60 0.40 

PC 0.20 0.30 4.50 3.00 3.00 0.10 0.00 0.10 0.00 

SE 0.10 0.00 0.00 5.00 4.00 0.70 0.00 0.00 0.00 

SH 2.20 2.00 0.00 3.70 1.40 1.00 0.00 0.10 0.10 

WB 0.00 0.08 0.30 0.10 0.30 0.00 0.00 0.30 0.00 

From (%) 

To (%) 

 

8.36 

6.63 

10.58 

16.48 

12.59 

14.04 

19.05 

17.59 

18.03 

14.80 

11.60 

11.59 

9.52 

9.52 

8.90 

8.33 

1.38 

1.03 

 

The Bilate Sub-basin is referred to the place where bare land and cultivated land area have increased 

and at the same time grass, eucalyptus, annual crop, perennial crop, water body, and shrub area 

decreased over the analysis periods. Substantial land use difference was observed in the bare land, 

grass, annual crop, and the cultivated land. This difference could be associated mostly with seasonal 

effects on classification accuracy. 

To show clearly this difference, the overall change was presented for the wet and dry seasons (Table 7 

and Figure 5). The existing forest and wetland cover of the Bilate Sub-basin was negligible as observed, 

as it was transformed to other forms of land cover.    
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Table 7. The LULC difference from wet to dry seasons 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Percentage differences in LULC classes from wet to dry season 
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 (%) Difference

Cultivated land 

Grass

Bare land 

Annual crops 

Percentage 

LULC class Wet season (%) Dry season (%) Difference (%) 

Settlements  9.52 9.52 0.00 

Water body  1.38 1.03 -0.36 

Perennial crops  11.60 11.59 -0.01 

Eucalyptus  19.05 17.59 -1.46 

Shrub 8.90 8.33 -0.57 

Cultivated land  12.59 14.04 1.45 

Grass 18.03 14.80 -3.23 

Bare land  10.58 16.48 5.90 

Annual crops  8.36 6.63 -1.73 

Total 100 100  
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5. CONCLUSIONS  

This study aimed at examining the impact of seasonality on the LULC classification accuracy in Bilate 

Sub-basin, Abaya-Chamo Basin, Rift Valley Basin of Ethiopia. The largest difference in percentage 

between the two season maps was obtained for the water body and bare land. The extents of grassland 

and annual crops also showed a significant difference in the two maps. However, the area of the 

settlement and perennial crops was not significantly changed by the seasonal effect on the 

classification. In this study multi-temporal (seasonal) LULC classification showed that the dry seasons 

map resulted in smaller area coverage of the grass, annual crop, eucalyptus, shrub, and water body than 

the wet season map. Grassland, shrubs, annual crops, and water body in the wet season map were 

changed to cultivated and bare land in the dry season map.  

The accuracy assessment for the existing LULC classification was analyzed. According to the 

classification results, the overall accuracy was season-dependent. A higher overall classification was 

achieved for the dry season than the wet season map. Hence, the selection of a particular season could 

have a large impact on the accuracy and reliability of the resulting classification. Aside from the 

influence of the climate on classification accuracy, a particular region can be barren land one season 

and filled with crops the next. Similar seasonal variations might happen to other land cover classes 

including grassland and water bodies. This indicated the need for using multi-temporal images for 

LULC classification. Future studies can explore methods to produce single LULC maps based on the 

integration of information from multiple seasons.  
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