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Abstract 

Drought is a natural disaster resulting from an extended period of insufficient precipitation, leading to an inability to meet the 

needs of humans, livestock, and the environment. In Ethiopia, frequent and severe droughts increasingly affect the socio-

economic and environmental sectors. This study evaluates the current and future projected meteorological drought and its 

impact on major cereal crops yield over the Afar region in northeast Ethiopia. We used surface stations, satellite climate 

estimates, downscaled atmospheric reanalysis, and regional climate model datasets. We evaluated the occurrence of drought 

using the Standardized Precipitation Index (SPI) and Standardized Precipitation and Evapotranspiration Index (SPEI) 

calculated at 3-month and 12-month time scales. The drought vs. regional cereal yield is correlated to explain yield variability 

in the region. Results showed that more intense droughts were analyzed in 1984, 1985, 2002, 2008, 2009, 2010, 2015, and 

2016. Among these years, 1984, 2002, 2008, 2009, and 2015 were the driest years across all locations in the study area. The 

regression of SPI and SPEI with yield showed that the indices significantly explained (r2 = 0.56 for SPI and 0.18 for SPEI) the 

observed yield variation. Spatially, more intense drought prevails over the northern, northwestern, and southwestern parts of 

Afar, where these parts are more prone to severe drought. The projected drought pattern showed increases in the intensity and 

frequency of drought in the middle and end of the century. The findings of this study are helpful for stakeholders working on 

drought mitigation in the region.  

Keywords: climate change, crop yield, drought projection, meteorological drought.  

Received: 15 Apr 2023; accepted 10 May 2023 Published: December, 2023 

 

 

 

 

Ethiopian Journal of Water Science and Technology (EJWST) 

  DOI:   https://doi.org/10.59122/17519g6 

  Vol. 6 , 2023, Pages: 75~108                         ISSN(Print): 2220-7643 

 

mailto:thomas.torora@amu.edu.et
mailto:tororathomas@yahoo.com
https://doi.org/10.59122/17519g6


 Tadele et al. /EJWST. Volume: 6:75-108 /2023 (ISSN: 2220 – 7643) 

  76 

1 INTRODUCTION  

Drought is a natural hazard and recurrent climatic event caused by a deficiency of precipitation with 

prolonged periods of high temperature (WMO, 2006) Drought occurs in nearly all parts of the world and 

all economic systems with varying frequency and severity (Wilhite & Glantz, 1985). Its magnitude, 

duration, and frequency govern the impact of drought. Drought magnitude refers to the amount of rainfall 

deficit at a particular place and specific time, whereas duration refers to the length of time a drought event 

stays (Saravi et al., 2009). Drought intensity is the ratio of drought magnitude to duration, which indicates 

the level of severity or degree of deficit. Meanwhile, drought frequency is the number of drought events 

in a given time and indicates how frequent drought is in a specific area (Mohammed et al., 2018).  

The ongoing climate change has a significant impact on drought. Drought's intensity and duration increase 

when temperature rises because a higher temperature causes more evaporation and surface drying. For 

example, the earth's surface air temperature over global land area has increased by about 1.7% since 1970 

(Dai, 2011). Studies showed that the global arid zone is very dry, increasing from 10–15% in the early 

1970s to 30% in 2002 (Dai, 2011; Feng & Zhang, 2015). Drought has increased worldwide over the 20th 

century (Aiguo et al., 2004; Trenberth et al., 2014). Studies revealed that drought had become more 

frequent and intense since 1970, affecting African countries more, with most of this drought caused 

recently. For example, the frequency and intensity of numerous extreme, multi-year droughts increased 

every century, with the longest and most intense drought recently occurring in the Sahel and equatorial 

countries of East Africa (Masih et al., 2014). For instance, estimates of the impact of drought indicate that 

between 1900 and 2013, about 291 droughts were recorded in Africa, causing enormous losses to 

humanity, killing almost a million people, and causing an economic loss of over 3,000 million dollars 

(Masih et al., 2014). Many scholars have investigated future drought changes using projected climate 

datasets (Teshome & Zhang, 2019, Haile et al., 2020). Haile et al. (2020) indicated a decreasing rainfall 

trend for the June-September primary rainy season and increased variability for the February to May rainy 

season over Ethiopia. The projected rainfall extremes of very wet days and the number of heavy rainfall 

days showed a decreasing trend (Teshome & Zhang, 2019). Both daily maximum and minimum 

temperatures showed a significantly increasing trend. Accordingly, in Eastern Africa, drought conditions 

are likely to increase by 16%, 36%, and 54% by the end of the century under low, medium, and business-

as-usual emission scenarios, respectively (Haile et al., 2020).    
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In Ethiopia, more severe and frequent droughts are increasingly affecting the socio-economic sector, 

particularly the agricultural sector. Agriculture makes up the majority of the country’s economy, as more 

than 95% of the crop production is based on rain-fed agriculture (Minda et al., 2018). Rainfall dependency 

on the agricultural sector results in a continuous problem with food security (WFP, 2014). The large 

majority of the people living in Afar regional state of Ethiopia are pastoralists, deriving their income and 

subsistence mainly from rearing livestock. According to Famine Early Warning System Network 

(FEWSNET) report, the humanitarian situation has changed dramatically due to the 2015/2016 drought 

since the beginning of 2017 in Somali and Afar regions. Thus, the 2015/2016 drought is resulted in large 

livestock losses and caused severe food insecurity in the pastoral areas of Ethiopia (FEWSNET, 2016).  

During drought periods, for example, cereal crop prices increase due to demand-supply imbalance, while 

livestock prices decrease due to poor body condition and feed scarcity. Studies indicated that the price of 

main cereal crops increased at the national level during the 1997/98 drought period. Prices of sorghum, 

wheat, maize, and Teff were 13%, 38%, and 47% higher in the third quarter of 1998 compared to the first 

quarter of 1997 period (Bachewe et al., 2017). In the 2015 drought period, the price of oxen in January 

2017 was 13% lower than that of January 2014, and sheep in January 2017 was 9.4% lower than in January 

2014 (Bachewe et al., 2017). According to Ethiopia's Central Statistical Agency (CSA), following the 

2015 drought, grain crop production decreased by 13.3% and 15.4% in Afar and Somali pastoralist 

regions, respectively (CSA, 2018).  

Among the numerous drought indices, the most commonly used indices are the Standardized Precipitation 

Index (SPI) (McKee et al., 1993) and the Standardized Precipitation and Evapotranspiration Index (SPEI) 

(Vicente-Serrano et al., 2010). The SPI has been increasingly used during the last two decades because of 

its solid theoretical development, robustness, and versatility in drought analysis and quantification 

(Quiring, 2009). The SPEI was first proposed as an improved drought index that is especially suited for 

studies of the effect of global warming on drought severity. Although the steps calculating the SPEI and 

SPI are similar, the SPEI is based on a climatic water balance that is adjusted using a three-parameter log-

logistic distribution (Vicente-Serrano et al., 2010). It is also noted that many researchers have used SPI 

and SPEI simultaneously to study the impact of drought on crop performance as indicators of drought 

(Begna, 2020; Mohammed et al., 2022). Drought is the most complicated and least understood of all 

natural disasters. Its complex and widespread nature makes it difficult to define its beginning and end 

(Gerber & Mirzabaev, 2019). The application of SPI and SPEI is very important to evaluate drought 
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indices as tools for monitoring, evaluating and testing their ability to explain the variance of crop yield 

during the growing season. Moreover, it is important that which drought index, SPI or SPEI that more 

explaining the variance of crop yield over the study area. Therefore, this study aims to assess the past and 

future variations of drought characteristics and their impact on cereal crop productivity using SPI and 

SPEI drought indices in Afar region, Ethiopia. Accordingly, we formulated the following research 

questions to be addressed in this study: 

i. How is the spatiotemporal variation of drought characterized during the last 40 years (1981-2020) 

in the Afar region? 

ii. What are the expected changes in drought in the coming decades compared to the base period? 

iii. What is the association between drought and rain-fed cereal crop productivity in the study area? 

2 MATERIALS AND METHODS 

2.1 Description of the study area  

The Afar region is located northeast of Ethiopia (Figure 1). The region is geographically located between 8° 51' and 

14° 34' N and 39° 47' and 42° 24' E, and has an area of about 94,760 km2 (Wakie et al., 2014). According to the 

Ethiopian Economic Association report, the region is divided into five administrative zones (EEA, 2021).  

 

Figure 1| Study area map: spatial distribution of 44 meteorological stations indicated by circled dots that were used in this 

study. The rainfall stations were first categorized into clusters based on rainfall spatial coherence and clustered into four, namely 

the Dubti cluster, Kuneba cluster, Gewane cluster, and Awash cluster, using the K-mean clustering approach. Additional data 

is provided in the attached supplementary materials.  
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The rainfall of the study area is bimodal, with two wet seasons. The first rainy season extents from February to May 

(FMAM), known as Belg, while the second and main rain season spans from June to September (JJAS), known as 

Kiremt, as per the Ethiopian Meteorology Institute (EMI) classification (Aytenfisu, 2024). The Belg rain peaks in 

April while the Kiremt rains in August (Gummadi et al., 2018). The mean annual rainfall is 740.5 mm, while the 

mean annual, daily minimum, and maximum temperatures are 28.3, 19.8, and 37.3 °C, respectively (Wakie et al., 

2014; Gummadi et al., 2018). 

The livelihood of the Afar people is predominantly pastoralism. However, due to recurrent drought, which resulted 

in a decreasing number of livestock, the pastoral mode of production has been challenged occasionally, and the 

pastoral households have entered into alternative livelihoods such as agro-pastoralism (Diriba, 2020). According to 

the CSA report, rain-fed agriculture has been practiced in Afar, and at the moment, a significant portion of 

households are engaged in crop production in the region. Among cereal crops, Teff, barley, wheat, maize, and 

sorghum are the most commonly grown crops grown in the region (CSA, 2021). 

2.2 Data  

We used daily rainfall, maximum, and minimum temperature data from 44 weather stations (> 70% of the 

total available stations in the Afar region) obtained from the EMI for the period 1981 to 2020 (Figure 1). 

Since there are gaps in the gauged data, other data sources are utilized to fill the gaps. The missed rainfall 

data is filled from the Climate Hazards Group Infrared Precipitation (CHIRP). The CHIRP dataset has 

been used in drought monitoring and evaluations (Tuo et al., 2016; Kebede et al., 2020). The detailed 

description of the data was provided by Funk et al., (2015) and Dinku et al., (2018). To fill in the daily 

maximum and minimum temperature data, we used the European Center for Medium-range Weather 

Forecast's (ECMWF) fifth-generation Atmospheric Reanalysis downscaled at the spatial resolution of 

10×10 km2 (AgERA5). The performance of the data is evaluated over East African countries (Gleixner et 

al., 2020).   

2.2.1 CMIP5 climate projections 

The Coupled Model Inter comparison Project phase 5 (CMIP5) dataset provide a quantitative assessment 

of future drought projection. From the CMIP5 model groups, we used five Regional Climate Models 

(RCMs) dynamically downscaled for the Coordinated Regional Downscaling Experiments (CORDEX) 

for the Africa domain. Several scholars in Ethiopia have evaluated these models, and their findings 

indicate well-simulated rainfall and temperature in Ethiopia (Worku et al., 2018). Details of the models 

are presented in Table 1.  
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Table 1| Descriptions of RCMs utilized in this study and their deriving sources. 

Description of RCM Driving 

sources 

Country  RCM 

Regional Atmospheric Climate Model version 2.2 EARTH The Netherlands RACMOO22T 

Swedish Meteorological and Hydrological Institute 

(SMHI), The Rossby Centre Regional Climate model 

version 4 

CNRM-

CERFACS-  

Sweden  SMHI-RCA4 

Consortium for Small-scale Modeling (COSMO) Climate 

Limited Area Modelling Community (CLMcom) 

CNRM-

CERFACS-

CNRM-CM5 

USA CCLM4-8-17 

Max Planck Institute for Meteorology-Climate Service 

Center (MPI-CSC), Regional Model 

MPI-M-MPI-

ESM-LR 

Germany REMO2009 

Swedish Meteorological and Hydrological Institute 

(SMHI), version 4 

CCCma-

CanESM2 

Sweden CanRCA4 

The average drought changes concerning the reference period (1981-2005) are computed for the near 

future (2006-2040), mid-century (2041-2070), and end-century (2071-2100) future projected periods. The 

three-slice sub-division investigates the possibility of significant variations in drought conditions as 

applied in literature (Park et al., 2015;  Haile et al., 2020). Two Representative Concentration Pathways 

(RCP4.5 and RCP8.5) emission forcing was selected. These pathways are representative of medium 

emission (RCP4.5) and higher emission (RCP8.5) scenarios described by Riahi et al., (2011) and Thomson 

et al., 2011). 

2.2.2 Bias correction 

The power transformation (PT) method corrects the precipitation bias. This method is often used to correct 

precipitation data from climate models. It was implemented in Ethiopia and achieved high-quality 

performance (Tumsa, 2022).       

   Pcor hst, m, d = Phst,m,d
b ∗ [

u(Pobs,m )

u(Phst,m)
]                                                         (1) 

Where Pcor hst, m, d denote the corrected precipitation on the dth day of the mth month and Phst,m,d denote 

the simulated precipitation outputs during the relevant period, the subscripts d and m are specific days and 

months, respectively, and u denotes the mean value, b is a random constant number called correction 

factor.  
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The maximum and minimum temperatures are corrected using the Linear scaling (LS) bias correction 

method. The scaling approach is mainly linear and adjusts the climatic factors based on the differences 

between observed and model output  explained by Zollo et al., (2014) and Crochemore et al., (2016). 

Tcor hst, m, d = Thst,m,d + [u(Tobs,m) − 𝑢(Thst,m)]                            (2) 

Where Tcor hst, m, d denote the corrected temperature on the dth day of the mth month, and Thst,m,d denote 

the simulated temperature outputs during the relevant period, the subscripts d and m are specific days and 

months, respectively, and µ denotes the mean value. 

2.2.3 Data clustering  

The annual mean precipitation dataset from the 44 stations clusters similar rainfall regimes using a 

centroid-based approach known as the K-means clustering method. The k-mean algorithm is the most 

widely used iterative algorithm in data clustering, which iterates to determine the optimal value of the 

centroid. In the k-mean approach, the ideal numbers of clusters are calculated using a graphical technique 

called the elbow method noted by Nanjundan et al., (2019) and Umargono et al., (2020). The algorithm's 

performance improves with a smaller inertia value.  

J =  ∑ ∑ Wik||Xi − μk||2K
k=1

m
i=1                                                               (3) 

Where |𝑋𝑖 − 𝑉𝑗| is the Euclidean distance between 𝑥𝑖 and 𝑉𝑗, 𝑘 is the number of data points at the ith cluster, 𝑚  is 

the number of cluster centers, 𝑋𝑖 is the set of data points, and 𝜇𝑘 is the set of centers, respectively. W𝑖𝑘 = 1  for 

data point 𝑋𝑖 if it belongs to cluster K; otherwise, 𝑊𝑖𝑘 = 0 and 𝜇𝑘 are the centroid of 𝑋𝑖’s cluster, respectively. 

Wik = { 1 if k = argmin, ||Xi − μk||2

0                                       otherwise 
                                             (4) 

In other words, assign the data points 𝑋𝑖 to the closest cluster judged by its sum of squared distance from the cluster's 

centroid. 

                      μk =  
∑ WikXim

i=1

∑ Wikm
i=1

                                                               (5) 

2.2.4 Model performance evaluation 

In this study, three statistical parameters are implemented to evaluate the performance of regional climate 

models performance whether they are reproducing the observed past climate variables over the period of 

1981 to 2005. The statistical metrics in this study are comprising Pearson Correlation, Mean Root Square 
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error (MRSE) and Bias (BIAS), respectively. The RMSE measures the absolute mean difference between 

the observed and simulated dataset, where the value of RMSE is closer to zero, it is well scored (Chai et 

al., 2014). The Pearson correlation measures the linear relationship between two variables, which is used 

to evaluate the performance of RCMs in simulating the local climatic variables. Boslaugh (2012) states 

that the correlation coefficient (r) ranges from -1 to +1 when the value of r is 0.1 is taken as small, 0.3 is 

taken as medium, and 0.5 is taken as high model performance. The Pearson correlation coefficient is 

computed as: 

                                          r =
∑ (n

i=1 O−O)(M−M)

√∑ (O−�̅�)2n
i=1  ∗√∑ (M−�̅�)2n

i=1

                                                     (6) 

Where r is the correlation coefficient, O is observed rainfall, O is observed rainfall, M is model rainfall, 

and M is the mean of model rainfall. The Bias measures the systematic error between the observed and 

simulated climate variables, and when the value close to zero, indicating good performance of the model, 

while values away from zero, the models deviate from the observations. When the value is negative, 

indicate the models are underestimating while the value is positive, the models are overestimating 

(Florida, 2021).  

𝐵𝐼𝐴𝑆 =
∑ (𝑆𝑖− 𝑂𝑖)𝑁

𝑖=1

∑ 𝑂𝑖
𝑁
𝑖=1

                                                                   (7) 

𝑅𝑀𝑆𝐸 = √∑
(𝑆𝑖−𝑂𝑖)2

𝑁
𝑛
𝑖=1                                                            (8) 

Where 𝑆 and 𝑂 are the simulated and observed values, respectively, while 𝑖 refers to the simulated and 

observed pairs and 𝑁 is the total number of such pairs.  

2.2.5 Crop yield data 

Drought is a major factor influencing cereal crop production and productivity in most of the rain-cultivated 

areas across Ethiopia. So, it is interesting to analyze how current drought indices are associated with the 

cereal yields in the region. As a result, the average cereal yields provided by the CSA, (2019) for 1994-

2019 period, and reported as a growing period yield sum for entire Afar region (CSA, 1996). As the Kiremt 

(June-September) cropping season is the main cereal crop production season, we focused on this cropping 
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season in our study. The cereal crops we considered are mainly the total sum of maize, teff, and sorghum, 

as these are staple foods of the region.  

2.3 Methods 

In this study, we implemented the SPI and SPEI meteorological drought indices to evaluate the 

characteristics of drought and its impact on crop yield. The indices are calculated using the Climate Data 

Tool (CDT). As mentioned by Nsengiyumva et al., (2021) and  Dinku et al., (2022), CDT is an open-

source, R-based software with an easy-to-use graphical user interface used by over 20 countries. 

2.3.1 Standardized precipitation index  

To assess long-term and medium-term drought occurrences, the SPI value and its probability density 

function of the gamma distribution are calculated as: 

g(x) =
1


Γ()

x−1 e
−

x

β, for x > 0                                               (9)                

Where  > 0 is a shape parameter,  > 0 is a scale parameter, x > 0 is the amount of precipitation, and () 

is the gamma function. The probability that the random variable x is less than 𝑥0 can be computed for the 

precipitation 𝑥0 in a certain year: 

𝐹(𝑥 <  𝑥0) =  ∫ 𝑓(𝑥)
∞

0
𝑑𝑥                                            (10) 

𝐹(𝑥 = 0) =
𝑚

𝑛
                                                                (11) 

Where 𝑚 is the number of samples with precipitation of 0 and 𝑛 is the total number of samples. To normal 

standardized processing of Γ probability distribution, we have substituted the result of probability value 

into the normalized normal distribution function: 

𝐹(𝑥 <  𝑥0 =  
1

√2𝜋
∫ 𝑒−𝑥2/2𝑑𝑥

∞

0
                                      (12) 

The SPI can easily be obtained as the standardized values of F(x) and calculated as: 

𝑆𝑃𝐼 = 𝑆
𝑡−(𝑐2𝑡+𝑐1)+𝑐0

[(𝑑3𝑡+ 𝑑2)𝑡+ 𝑑1]𝑡+1
                                                 (13) 

Where 𝑡 =  √𝑙𝑛
1

𝐹2
  and  𝑐0 = 2.515517, 𝑐1 = 0.802853, 𝑐2 = 0.010328, 𝑑1 = 1.432788  
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𝑑2 = 0.189269 𝑎𝑛𝑑 𝑑3 = 0.001308, respectively. Where 𝑆 is the probability density plus or minus 

coefficient. If F > 0.5, then 𝑆 = 1, if F ≤ 0.5, then 𝑆 = −1. 

2.3.2 Standardized precipitation and evapotranspiration index  

SPEI is calculated similarly based on the difference between potential Evapotranspiration (PET) and 

Precipitation (P). This study used the modified Hargreaves method based on only observed temperature 

values (Hargreaves & Allen, 2003). The difference between P and PET is computed as follows 

 𝐷𝑖 = 𝑃𝑖 −  PET 𝑖                                                      (14)          

           PET = 0.0023(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 ∗ (𝑇𝑚𝑒𝑎𝑛 + 17.8) ∗ 𝑅𝑎                     (15) 

Where PET is potential evapotranspiration (mm day-1), 𝑇𝑚𝑎𝑥,  𝑇𝑚𝑖𝑛, and 𝑇𝑚𝑒𝑎𝑛 are maximum, 

minimum, and mean air temperature (oC).  

Ra is extraterrestrial radiation given in (mm day-1), computed from latitude and the day of the year  

            Ra =
1440

π
(Gsc. Dr)[φsign(φ)sin(σ) + cos(φ) cos(σ) sin(φs)]                             (16) 

                          𝐺sc = 0.0820MJ m−2, is solar constant                                                

      𝐷𝑟 = 1 + 0.022 cos [
2𝜋(𝐽𝐷)

365
] is the inverse relative distance from the Earth to the Sun    (17) 

𝐽𝐷 𝑖𝑠 𝑎 𝑑𝑎𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟                                  

                                  𝜑𝑠 = 𝑎𝑟𝑐𝑜𝑠[− tan(𝜑) tan(𝜎)] is the sunset hour angle (rad)                 (18) 

                                 𝜎 = 0.409sin (2𝜋
𝐽𝐷

365
− 1.39), is the solar declination (rad)                (19) 

φ is the latitude of the location                      

𝑀𝐽

𝑚2𝑑
, can be converted to mm/d: as 

𝑚𝑚

𝑑
=

1

2.43
∗

𝑀𝐽

𝑚2

𝑑
 

Di is quantified at different time scales using the same procedure as SPI. The difference between the 

specific months j and year i depends on the selected time scale k. For example, the accumulated difference 

for j month in a given year i with k-month time scale is calculated using the formula: 
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                             𝑋𝑖,𝑗
𝑘 =  ∑ 𝐷𝑖−𝐼,𝑗 +  ∑ 𝐷𝑖,𝑗 ,

𝑗
𝐼=1  𝑘

𝐼=𝑘+𝑖,   𝑘+𝑗 if j < k                            (20) 

                                            𝑋𝑖,𝑗
𝑘 =  ∑ 𝐷𝑖,𝑗, 

𝑘
𝐼=𝑗−𝑘+𝑗  if j ≥ k                                            (21) 

Where 𝐷𝑖,𝑗 is the difference between P and PET of the first month of the year i, given in mm. The three 

parameters of the log-logistics probability density function are used to fit the data series and expressed as 

follows: 

                       𝑓(𝑋) = (



) (

𝑥−


)
−1

[1 + (
𝑥−


)


]
−2

                                                    (22) 

Where α, β, and γ represent the scale, shape, and location parameters, respectively, that are estimated from 

the data series Di. Parameters of the log-logistic distribution obtained by the L-moment procedure that is 

the most robust and easy approach Reath et al., (2018).  

                                                      =
2w1−w0

6w1−w0−6w2
                                                            (23) 

                                                           =
(w0−2w1)

(1+
1


)(1−

1


)
                                                                (24)                          

                                        = 𝑤0 − 𝛤 (1 +
1


) 𝛤                                                                     (25) 

Thus, the cumulative distribution function of a given time scale is computed as follows: 

                                               𝐹(x) = [1 + (
𝑥−


)


]
−1

                                                    (26) 

The SPEI can easily be obtained as the standardized values of F(x) and calculated as: 

                                    SPEI = w −
C0+C1W+C2W2

1+d1w+d2w2+d3w3
                                                    (27) 

w =  √−2ln (P) 

C0 = 2.51517, C1 = 0.802853, C2 = 0.0103288, d1 = 1.432788, d2 = 0.189269, and d3 =

0.001308 and P is the probability of exceeding a determined 𝐷𝑖 value, p = 1 − F(𝑥) if p > 0.5, then p is 

replaced by 1 − p and the sign of the resultant SPEI is reversed. Guttman, (1999) 
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Guttman, (1999) and Vicente-Serrano et al. (2010) categorized the drought characteristics into different 

severity levels, as indicated in Table 2. The authors also defined the drought event criteria for any time 

scale. The number of months in which SPI/SPEI values are consecutively ≤ -1 is considered a drought 

incident and determines the duration of the incident. The drought event ends when the SPI/SPEI becomes 

positive. Therefore, each drought event has a duration defined by its beginning and end and an intensity 

for each month the event continues. The positive sum of the SPI/SPEI within a drought event is known as 

drought magnitude (WMO, 1987). 

Table 2| SPI and SPEI drought categories defined by drought severity regimes   

Anomaly Range of SPI/ SPEI values (d_value) drought severity regime 

 

Positive 

2.0 < d_value <= MAX 

1.5 < d_value < = 2.0 

1.0 < d_value <= 1.5 

Extremely wet 

Very wet 

Moderately wet 

None -1.0 < d_value <= 1.0 Normal precipitation 

 

Negative 

-1.5 < d_value <= -1.0 

-2.0 < d_value <= -1.5 

MIN <= d_value <= -2.0 

Moderately dry 

Very dry 

Extremely dry 

 

The SPI is considered to enumerate the rainfall deficit for multiple timescales. These time scales reveal 

the impression of drought on the accessibility of the different water resources. We selected the 3-month 

and 12-month time scales of SPI and SPEI to evaluate past and future drought occurrence for the following 

reasons. The 3-month SPI/SPEI reveals medium-term moisture conditions of the current month and the 

past two months, providing a seasonal rainfall estimation for seasonal crop production. The 12-month 

period reflects the long-term rainfall patterns that compare the rainfall for 12 consecutive months with 

that recorded in the same 12 consecutive months in all previous years without missing data (WMO, 1987).  

2.3.3 Drought trend  

The Mann-Kendal (MK) test is used to perceive statistically significant decreasing or increasing trends in 

long-term temporal datasets by Mann, (1945) and (Wang & Vrijling, (2005). The MK trend test is based 

on two hypotheses: one is null (Ho), and the other is the alternative (H1) hypothesis. The Ho expresses 

the existence of no trend, while H1 elucidates a significant rising or declining trend in the temporal drought 
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pattern. Based on the 5% significant level, if the p-value is < 0.05, the alternative hypotheses are accepted, 

which signifies the presence of a trend in the data. If the p-value is > 0.05, the null hypothesis will be 

accepted, which denotes the absence of a trend in the data. The following equations provide the 

computational steps for the trend.   

S = ∑ ∑ sin( Tj − Ti )
n
j=i+1

n−1
i=1                                            (28) 

Where Tj and Ti are the monthly, seasonal, and annual values in years' j and i, j > i respectively, n is the 

number of data points. Assuming  (Tj − Ti ) = , the value of sign (θ) is computed as follows:  

sin(Tj − Ti ) = {

1;       𝑖𝑓    𝑇𝑗 − 𝑇𝑖 > 0
0;       𝑖𝑓   𝑇𝑗 − 𝑇𝑖 = 0

−1;      𝑖𝑓   𝑇𝑗 − 𝑇𝑖 < 0
                          (29) 

A positive value of S indicates an increasing trend, whereas a negative value indicates a declining trend 

in the data. The magnitude of drought is evaluated by a simple non-parametric procedure using Sen's slope 

estimator developed by Sen (1968) and calculated as follows: 

Qi = (
x𝑗−x𝑖

j−1
)                                          (30) 

Where i = 1 to n-1, j = 2 to n, 𝐱𝒋 and 𝐱𝒊 are data values at time j and i where (j > i), respectively. If there 

are n values of 𝐱𝒋 in the time series, Sen's slope estimator will be N = n(n-2)/2. The Sen's slope estimator 

is the mean slope of N values; then, the Sen's slope is estimated as: 

Qij =  {

x𝑗−x𝑖

j−1
;                               𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

1

2
(𝑄

𝑁 

2
+ 𝑄 [

𝑁+2

2
]) ;    𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

                                             (31) 

The positive value of 𝐐𝐢𝐣 indicates an increasing trend, while the negative value of 𝐐𝐢𝐣 shows a decreasing 

trend, where the units of Sen's slope (𝐐𝐢𝐣) is the slope per year in the temporal dataset. 

The MK trend test is a nonparametric test widely used to detect significant trends in a set of time series 

data. However, researchers have shown that the original Mann-Kendall test did not consider serial 

correlation in a time series data set Hirsch, (1981) and  Bari et al., (2016). Furthermore, in many real-

world situations, observed data are autocorrelated, which can lead to misinterpretation of the results of 

trend estimates (Cox et al., 2013; Hamed & Rao, 1998). Consequently, Hamed & Rao, (1998) have 

developed a modified Mann-Kendall trend test that is based on the assumption that time series data are 
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serially correlated and therefore autocorrelation is addressed by a modified MK trend test. The modified 

MK trend test has been used by many researchers to eliminate the influence of serial correlation in the 

original MK trend test in time series trend detection studies Yue & Wang, (2015)  and Patakamuri & 

Brien, (2021). In this study, we use the modified MK trend test developed by Hamed & Rao, (1998).   

2.3.4 Drought and crop yield correlation   

Climate variability seriously threatens the productivity of Ethiopia's food crops. Understanding the impact 

of extreme weather events on agricultural production is crucial for resilience to climate change and 

improving food security. To determine the context and magnitude of drought-induced yield fluctuations, 

it is necessary to eliminate or minimize the influence of non-climatic factors such as variety, management, 

and technology to eliminate biases arising from these trends. Crop yield anomalies are identified from 

declining time series using a linear regression method, and drought indices are linked to yield anomalies. 

Several researchers have used a linear regression model to modify yield trends and used the resulting 

anomalies to determine the effects of drought on crop yield by Lobell & Asner, (2003) and Potopova et 

al., (2016). A simple linear regression model is given as follows:  

      𝑌𝑡 = 𝛼 + 𝛽 ∗ 𝑋𝑡                                                                        (32) 

Where 𝑌𝑡  represents a yield anomaly at time t, 𝛼 represents the constant, which is called the intercept of 

the regression model, 𝑎𝑛𝑑 𝛽 is a regression coefficient of the independent variable, which represents the 

gradient of the line and is referred to as the slope. 𝑋𝑡 is an independent variable.  

The association between de-trended yield and drought indices is explored through correlation analysis 

using a statistical package for social studies (SPSS). The correlation results provide initial information on 

the positive or negative associations, which helps to understand the regression results. Finally, a linear 

regression analysis of the de-trended yield and drought indices is performed to quantify the percentage 

response of determinant (r2) of yield variations achieved jointly by SPI and SPEI at a 4-month time scale. 

The yield anomalies (𝑌𝑡) at time t are calculated as follows: 

                                    𝑌𝑡 = y − μ                                                             (33) 

The crop data is regional yield data (quintal per hectare, qt/ha) for the entire Afar region for the Kiremt 

cropping season from 1994 to 2019. Since the climate of the study area is bimodal, FMAM and JJAS, the 

SPI and SPEI at a 4-month time scale are used to evaluate the impact of drought on crop yield.  
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2.3.5 Assessing drought characteristics  

Drought characteristics can be expressed by these essential features such as duration, frequency, 

magnitude, intensity, severity, spatial-temporal room by Ettenmaier, (2005) and Alamgir et al., (2015). 

The duration, severity, intensity and frequency of the drought events were computed based on Table 2. 

The frequency of the drought is the number of months in which the SPI/SPEI value agrees as a set value 

in Table 2 and divided by the number of months in the whole sequence (Wang et al., 2014).  

𝐹 =  
𝑛

𝑁
∗ 100                                                                  (34) 

Where 𝑛 is the number of months of drought events when the SPI/SPEI is less than - 1 that a drought 

index value agrees a set of drought criterion divided by the number of months in the whole series (𝑁). The 

drought frequency (F) is used to assess the drought prevalence during the study period over the region. 

The drought duration is the length of drought period. Whereas the drought magnitude (M) is the 

cumulative sum of the drought index value based on the duration of the drought occurrence when the 

SPI/SPEI value is less than or equal to -1 and computed as: 

𝑀 =  ∑ 𝑆𝑃𝐼/𝑆𝑃𝐸𝐼𝐷
𝑖≤−1                                                       (35) 

Similarly, the intensity of a drought (I) is the ratio of drought magnitude (M) to drought duration (D), 

respectively. Events that have a shorter duration and higher magnitude will have larger intensities.  

𝐼 =
𝑀

𝐷
                                                                                     (36) 

Moreover, the inverse distance weighting approach is implemented to visualize and interpolate the spatial 

patter of drought characteristics with the support of ARC-GIS tool. 

3 RESULTS 

3.1 Temporal pattern of drought 

Time series plots of drought indices are derived from station-wide and spatial averages of 44 

meteorological stations' precipitation and temperature datasets for the 1981-2020 period. The average 

change in drought magnitude and frequency under global warming is investigated using five RCMs of 

daily precipitation and temperature datasets to understand how frequently the drought will likely occur. 

The drought characteristics, such as frequency and intensity, are used to evaluate the occurrence of drought 

over the study area using SPI and SPEI at 3-month and 12-month time scales. Furthermore, the drought 
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index for the crop growing season is calculated based on the seasonal classification of the study area, 

which mainly includes Belg and Kiremt crop growing seasons. Therefore, SPI and SPEI at a 4-month time 

scale are used to evaluate the impact of drought on crop yield.  

Figure 2 depicts the spatially averaged time series plot of SPI and SPEI at 3- and 12-month time scales for 

the 1981-2020 period. The finding shows that severe drought prevailed in 1984, 1987, 1994, 1999, 2002, 

2007, 2008, 2009, and 2015, whereas extreme drought prevailed in 2016. These years are considered the 

most intense drought episodes, with a severity scale of -1.50 to -5.35. 1984, 2008, 2009, and 2015 are 

considered the driest years across all locations. The drought intensity quantified by the SPEI 3-month and 

SPEI 12-month time scales were -1.36 and -1.47, with the extreme drought of -2.17 and -2.01; this extreme 

drought was quantified in 1984 and 2015, respectively. Whereas the drought intensity quantified by SPI 

3-month and SPI 12-month time scales were -1.50 and -1.77 with extreme drought of -3.15 and -2.8, this 

extreme drought was evaluated for 1984 (Figure 2).  

 

Figure 2| Spatial averaged time series plot for SPI (a) and SPEI (b) at a 3-month (bar-plots) and 12-month (line-plot) time scale. 

Blue (SPI) and green (SPEI) colors represent positive values, and red represents negative values.  

The SPI and SPEI values at 3-month and 12-month time scales at cluster representative stations (Figure 

1) are presented in Figure 3 and Figure 4. The results indicate the presence of severe to extreme drought 

conditions. For instance, extreme drought quantified by SPI 3-month time scale at Argoba (-4.49 for 

2015), Dubti (-2.11 for 2015), Gewane (-4.03 for 2017) and Kuneba (-3.54 for 2015). At the same time, 
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extreme drought quantified by SPI-12-month time scale for the stations were -4.50, -2.98 -2.57, and -4.01, 

calculated for 2015, 1999, 1984, and 2015, respectively (Figure 3).  

 

Figure 3| Time series plot for Argoba (a), Dubti (b), Gewane (c), and Kuneba (d) stations at SPI's 3-month (bar-plots) and 12-

month (line-plots) time scales. Blue colors represent positive values, and red represents negative values. 

Similarly, extreme drought was quantified by the SPEI 3-month time scale at Argoba (-2.60 for 2009), 

Dubti (-2.20 for 2015), Gewane (-3.33 for 2015), and Kuneba (-3.08 for 2009) stations. Extreme drought 

quantified by the SPEI 12-month time scale at the same stations was -2.27, -2.01, -2.21, and -5.35, 

computed for 2016, 2008, 2015, 2011, and 2008, respectively (Figure 4).  
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Figure 4| Time series plot for Argoba (a), Dubti (b), Gewane (c), and Kuneba (d) stations at SPEI's 3-month (bar-plots) and 12-

month (line-plots) time scales. Green colors represent positive values, and red represents negative values. 

3.2 SPI and SPEI drought indices 

Table 3 presents the drought frequency and intensity for SPI and SPEI at 3-month and 12-month time 

scales. The spatial averaged time series findings indicated that SPEI identifies drought more frequently 

than SPI at both medium and longer scales. For example, the drought frequency identified by SPEI at 3-

month and 12-month scales is 17.8% and 16.0%, respectively. At the same time, the drought frequency 

identified by SPI at the 3-month and 12-month scales is 16.6% and 13.2%, respectively. The drought 

intensity quantified by SPI 3-month time scale at Argoba, Dubti, Gewane, and Kuneba stations were -

1.6%, -1.2%, -1.4%, and -1.5%, respectively. Whereas the drought intensity quantified by SPI, 12-month 

time scale at the same stations were -2.0%, -1.6%, -1.4%, and -1.8%, respectively. Similarly, the drought 

intensity quantified by the SPEI 3-month time scale at Argoba, Dubti, Gewane, and Kuneba stations was 

-1.5%, -1.5%, -1.5%, and -1.4%, respectively. At the same time, the drought intensity quantified by the 

SPEI 12-month time scale at the same stations were -1.5%, -1.4%, -1.5%, and -1.8%, respectively (Table 

3).  

The station drought frequency analysis indicated frequent droughts over the study area with varying 

severity during the last 40 years. For example, the drought frequency identified by the SPI 3-month time 

scale at Argoba, Dubti, Gewane, and Kuneba stations was 15.9%, 14.0%, 18.4%, and 15.1%, respectively. 

At the same time, the frequency of drought identified by the SPI 12-month time scale at the same station 

was 13.7%, 18.8%, 16.5%, and 13.2%, respectively. Similarly, the drought frequency identified by SPEI 
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at a 3-month time scale at Argoba, Dubti, Gewane, and Kuneba stations were 16.8%, 17.2%, 14.0%, and 

16.1%, respectively. At the same time, the drought frequency identified by the SPEI 12-month time scale 

at the stations mentioned above were 16.7%, 20.2%, 16.5%, and 13.7%, respectively (Table 3). 

Table 3| Drought frequency [%] and intensity [%] calculated for SPI and SPEI at 3-month and 12-month time scales.  

Station 

Frequency [%] Intensity [%] 

Extreme 

drought 

months 

SPI 3 SPEI 3 SPI 12 SPEI 12 SPI 3 SPEI 3 SPI 12 SPEI 12  

Argoba 15.9 16.8 13.7 16.7 -1.6 -1.5 -2.0 -1.5  

Dubti 14.0 17.2 18.8 20.7 -1.2 -1.5 -1.6 -1.4  

Gewane 18.4 14.0 16.5 16.5 -1.4 -1.5 -1.5 -1.5  

Kuneba 15.0 16.1 9.4 13.7 -1.5 -1.4 -1.6 -1.8  

Spatial average 16.5 17.8 13.2 16.0 -1.5 -1.4 -1.8 -1.5  

  

The correlation and regression analysis are used to associate the relationship between SPI and SPEI at 3-

month, 6-month, 12-month and 24-moth time scale. For the comparison of both indices, correlation 

Heatmaps and scatter plotting are presented in supplementaryError! Reference source not found.Figures 

4 and 5, and statistically evaluated by using the coefficient of determination and correlation coefficient. 

The SPI and SPEI calculated at different time scales are strongly correlated (r > 0.7) at a 0.05 significant 

level, indicating a fair degree of agreement between the two indices. The regression result indicated that 

strongest fit has been shown by values of SPI and SPEI at 6-month time scale, with R-squared value of 

91.20% of the variation. Moreover, the value of SPI gives closer result with SPEI in the same time scale 

(Supplementary Figure 5Error! Reference source not found.). According to Supplementary Figure 5, 

the highest value of R-square is 0.912 for SPI and SPEI at 6-month time scale while the lowest is 0.8724 

for SPI and SPEI at 24-month time scale.  

3.3 Spatial characteristics of drought 

The spatial extent of drought frequency, duration, and magnitude was calculated by inverse distance 

weighted (IDW) interpolation method for SPEI at 3-month and 12-month time scales (Figure 5). The most 

frequent drought prevailed at Chifra, Gewane, Dalifagi, and Telalak stations, where the drought frequency 

ranged from 17.3% to 19.9% during the 1981-2020 period for a 3-month time scale. Whereas for the 12-

month time scale, the maximum drought frequency prevailed at Semera, Dubti, Elidar, Mille, Chifra, 

Awura, Bidu, and Melkasedi stations with drought frequency in the range of 18.4% to 21.2% (Figure 
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5a,b). The drought duration at the 3-month time scale shows that longer duration prevailed at Chifra, 

Gewane, Telalak, Dubti, Ewa, and Argoba stations with a drought length of 81 to 95 months over the 

1981-2020 period. Whereas at a 12-month time scale, the longer drought duration was quantified at Dubti, 

Awura, Gewane, Mille, Dawe, Semera, and Chifra stations, ranging from 83 to 99 months, respectively 

(Figure 5 c, d). Drought magnitude showed that more intense drought quantified at Dalifagi, Gewane, 

Telalak, Chifra, Awura, Ewa, Teru, and Yalo meteorological stations with magnitude in the range of 117.3 

to 162.6 for a 3-month time scale. At the longer time scale, more intense drought was calculated at 

Dalifagi, Gewane, Dubti, Awura, Assaita, Dawe, Mille, and Semera stations with magnitude in the range 

of 122.6 to 242.7 throughout 1981 to 2020, respectively (Figure 5 e,f).  

 

Figure 5| Drought frequency [%] (left panel), duration [months] (middle panel), and magnitude [%] (right panel). The upper 

row shows the SPEI 3 months, and the lower row shows the SPEI 12-month scale.    

Figure 6 presents the number of stations [%] that showed drought during the 1981 to 2020 period for Belg 

(February to May) and Kiremt (June to July) farming seasons. All 44 meteorological stations showed 

drought occurrence in 1984 for both seasons. For the 1984, 2008, 2009, and 2015 years, the Belg drought 

propagated to Kiremt for nearly all the stations (Figure 6). 
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Figure 6| Number of stations [%] that recorded drought during the Belg and Kiremt farming seasons for the 1981-2020 period. 

Black and red represent drought during Belg and Kiremt seasons, respectively. The most widespread drought coverage 

prevailed during the Belg cropping season, particularly after 1999 (Figure 6). 

Table 4 Presents drought trends and magnitudes throughout 1981-2020 period which shows how drought 

is severe during Belg and Kiremt cropping season at climate station. The modified MK and Sen’s slope 

Estimator were used to determine trend and magnitude, respectively under the SPEI 4-month time scale. 

During the Belg crop growing period, 41 stations demonstrated a negative trend. Among the 41 stations, 

17 indicated significantly increasing trend toward dryness, with magnitude of in the range -1.25 to -10.0. 

The strong magnitude was recorded in Dubti, Abala, Gedamaitu, Awash-7 kilo, Semera Afambo, Afdera, 

Dalifagi, Dawe, Berhaile, Megale, Mille with magnitude of in the range -3.75 to -10.0. Similarly, the 

drought characteristics during Kiremt crop growing period indicated low significant as compared to Belg 

crop growing period. Among 44 investigated stations, only 15 stations indicated increasing trend toward 

dryness, with magnitude ranging from -2.21 to -12.5. The strongest magnitude recorded at Afambo station 

and have a Sen’s slope magnitude estimator of -12.5. The table also shows that there was no significant 

increasing or decreasing trend at any of the climate stations during Kiremt season. Moreover, the drought 

indices over the study area revealed no significant trends nearly all of the stations in Kiremt period (Table 

4).  
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Table 4| Drought trend during Belg and Kiremt farming seasons under SPEI-4 month time scale.  

No Stations Belg Kiremt 

Kendall's 

tau 

S' p-

value  

Sen's 

slope 

Kendall's 

tau 

S' p-

value  

Sen's 

slope 

1 Abala -0.444 -16 0.0153 -9.5 0.000 0 0.000 3.25 

2 Adaitu 0.111 4 0.6265 1.75 0.333 12 0.300 1.25 

3 Afambo -0.444 -16 0.0153 -7.75 -0.333 -12 0.144 -8.25 

4 Afdera -0.444 -16 0.0117 -8.25 -0.167 -6 0.396 -1.75 

5 Argoba -0.278 -10 0.2291 -2.5 -0.111 -4 0.566 -1.75 

6 Asara -0.167 -6 0.3559 -3.75 0.389 14 0.166 4.5 

7 Assaita 0.167 6 0.3958 4 0.222 8 0.450 4 

8 Awaramelka -0.056 -2 0.8383 -2 0.500 18 0.070 0.574 

9 Awasharba -0.222 -8 0.3020 -8.5 -0.056 -2 0.838 -0.5 

10 Awashsebat -0.389 -14 0.0166 -4.25 -0.111 -4 0.675 -3 

11 Awashsheleko -0.111 -4 0.5661 -4.25 -0.056 -2 0.838 -4.25 

12 Awura 0.000 0 1.0000 -1 0.000 0 0.000 5.75 

13 Berhaile -0.389 -14 0.0097 -4.5 0.056 2 0.882 2.5 

14 Bidu -0.278 -10 0.2291 -3.5 -0.056 -2 0.838 -1.63 

15 Bure -0.389 -14 0.0139 -5.25 0.222 8 0.450 3.5 

16 Chifra -0.167 -6 0.3958 -1 0.056 2 0.854 1 

17 Dalifagi -0.222 -8 0.0256 -4.5 0.389 14 0.214 2.75 

18 Dawe -0.278 -10 0.0289 -4.5 0.056 2 0.838 0.25 

19 Ditchoto -0.333 -12 0.1886 -6.75 -0.056 -2 0.865 0 

20 Dobi -0.111 -4 0.6265 -2.25 0.333 12 0.144 3 

21 Dubti -0.667 -24 0.0414 -10 -0.222 -8 0.288 -3 

22 Elidar -0.278 -10 0.2061 -4.5 0.000 0 0.000 0 

23 Elwiha -0.222 -8 0.4280 -4.75 0.222 8 0.256 6.75 

24 Endifo -0.167 -6 0.3958 -5 0.389 14 0.139 4 

25 Erebti -0.167 -6 0.5403 -3.75 0.444 16 0.089 5.75 

26 Ewa -0.389 -14 0.0126 -5 0.222 8 0.352 4.5 

27 Galafi -0.222 -8 0.2876 -3.5 0.167 6 0.396 3.25 

28 Gedamaitu -0.611 -22 0.0094 -9.5 -0.222 -8 0.239 -1.5 

29 Gerjele -0.278 -10 0.0181 -6.5 0.056 2 0.838 2 

30 Gewane -0.278 -10 0.2888 -3 0.278 10 0.181 4.5 

31 Harsis -0.056 -2 0.8535 -3.25 -0.056 -2 0.854 -0.5 

32 Kasagita -0.389 -14 0.0126 -8.25 0.000 0 0.000 1.5 

33 Kuneba -0.222 -8 0.2389 -1.25 0.111 4 0.614 3.25 

34 Logia -0.111 -4 0.5661 -7.5 0.111 4 0.667 2 

35 Manda -0.278 -10 0.2505 -4.5 0.167 6 0.429 1.25 

36 Megale -0.111 -4 0.0054 -4 0.056 2 0.854 1.75 

37 Melkasedi -0.333 -12 0.0153 -6.25 -0.222 -8 0.302 -1.75 

38 Mille -0.167 -6 0.3958 -3.75 0.278 10 0.289 5.25 

39 Semera -0.333 -12 0.0153 -8.25 -0.111 -4 0.566 -3.25 

40 Serdo -0.389 -14 0.1658 -6.5 -0.222 -8 0.302 -0.75 

41 Slisa -0.278 -10 0.0155 -2.25 -0.167 -6 0.396 -1.25 

42 Telalak -0.167 -6 0.3958 -3 0.167 6 0.396 2.25 

43 Teru -0.167 -6 0.4577 -1.75 0.000 0 0.000 0 

44 Yalo -0.056 -2 0.8651 -0.5 0.000 0 0.000 0.75 
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3.4 Future drought frequency and magnitude projections 

Dubti and Awash meteorological stations are selected to project future drought occurrence over the 

study area. The two stations are here used as reference climate stations due to the available historical 

dataset to evaluate historical climate model performance. As indicated in Figure 1, the two stations are 

located at lower elevation (Dubti station) at Dubti cluster and higher elevation (Awash station) at Awash 

cluster in the available stations network. Figure 7| Drought frequency [%] at Dubti and Awash stations 

under RCP 4.5 and 8.5 climate scenarios for the near-term (2006-2040), mid-term (2041-2070), and end of the 

century (2071-2100). 

 presents drought frequency at Dubti and Awash stations under RCP 4.5 and 8.5 forcing scenarios. We 

select the two stations because of better observational data records (>81%) and representativeness of the 

high (Awash) and low (Dubti) precipitation distribution of the Afar region. The result indicated that more 

intense drought is likely in both climate-forcing scenarios in the middle and end of the century. For 

instance, the average change (compared to the baseline period) in drought frequency under RCP4.5 is 

likely to increase by 2.7% and 8.3% (near future), 8.2% and 33.2% (mid-century), and 11% and 44.8% 

(end of the century) at Dubti station. Under the same climate forcing, the drought frequency is likely to 

increase by 12.2% and 10.1% (near future), 35.3% and 53.2% (mid-century), and 33.2% and 30.3% (end 

of this century) at Awash station. The average change in drought frequency under RCP8.5 forcing 

scenarios is likely to increase by 2.6% and 2% (near future), 12.9% and 12.8% (mid-century), and 38.7% 

and 73.2% (end of the century) at Dubti station. For Awash station, the average change in drought 

frequency is likely to increase by 11.9% and 6.9% (near future), 16.1% and 18.2% (mid-century), and 

50.7% and 54.4% (end of the century) as calculated for SPEI 3- and 12-months scale (Figure 7). 
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Figure 7| Drought frequency [%] at Dubti and Awash stations under RCP 4.5 and 8.5 climate scenarios for the near-term (2006-

2040), mid-term (2041-2070), and end of the century (2071-2100). 

As compared to the baseline climatological period (1981-2005), the average change in drought magnitude 

at Dubti station under RCP4.5 scenarios is likely to increase by 3.3% and 16.4% (near-century, 11.9% and 

81.0% (mid-century), and 16.9% and 124.1% (end-century). Similarly, the average change in drought 

magnitude at Awash station is likely to increase by 14.0% and 11.4% (near-century), 43.5% and 46.1% 

(mid-century), and 36.8% and 39.2% (end-century). Under RCP8.5 scenarios, the average change in 

drought magnitude is likely to increase by 3.1% and 2% (near future), 17.1% and 41.0% (mid-century), 

and 68.4% and 252.2% (end of the century) at Dubti station. Likewise, the average change in drought 

magnitude at Awash station is likely to increase by 16.3% and 8.8% (near future), 22.8% and 25.6% (mid-

century), and 74.0% and 93.6% (end-century) (Figure 8). 
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Figure 8| Drought magnitude [%] at Dubti and Awash stations under RCP 4.5 and 8.5 climate scenarios for the near-term (2006-

2040), mid-term (2041-2070), and end of the century (2071-2100). 

3.5 Association between drought and crop yield 

The annual average productivity of major cereal crops (in quintal per hectare - qt/ha) over the entire Afar 

region for meher harvesting season was compared to the drought indices calculated by SPI and SPEI at 4-

month time scale (June-September) period to evaluate the impact of drought on yield (Figure 9). We 

selected the medium time scale (4 months) to calculate drought as this time scale is suitable for describing 

agricultural droughts based on soil moisture availability, which provides a seasonal moisture estimation 

(WMO, 1987). The findings indicate that, in general, there is a significant increasing trend in crop yield 

over the region during the period 1994 to 2012 (Figure 9a). The correlation between drought indices and 

yield anomaly showed a strong positive correlation between calculated drought indices and yield anomaly 

(r2 = 0.56 and 0.18 for SPI and SPEI, respectively (Figure 9b,c). Other non-climatic factors, such as 

improved seed varieties, crop management options, etc., are not considered in our analysis yet explain 

year-to-year yield variabilities. 
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Figure 9| Observed average crop yield during Kiremt cropping season over 1994 -2019 (a), yield anomalies as a function of 

drought indices: SPI (b) and SPEI (C).  

4 DISCUSSION  

Ethiopia is a sub-Saharan African country located in the Horn of Africa. It is mainly vulnerable to drought, 

yet some parts of the nation are more vulnerable than others. Studies show that Ethiopia has experienced 

drought every two to three years, particularly in the northern and northeastern regions of the country 

(Mera, 2018). As reported by WFP, the 2015 drought was the worst in the past 30 years, exacerbating 

food insecurity in the nation (WFP, 2016). The Afar regional state is among Ethiopia's drought-prone 

areas, frequently and severely affected by recent drought. Recently, the region was severely affected by 

drought in 2005, 2009, and 2015, in which livelihoods were adversely affected (Ashenif, 2016). 
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Several researchers in Ethiopia have conducted meteorological drought studies, mainly examining 

historical data. Very few studies have highlighted future drought evolutions considering the ongoing 

climate change. The studies also considered Ethiopia, while limited ones focused on the Afar regional 

state. Furthermore, most of these studies evaluated drought using SPI, and only a few studies implemented 

SPEI based on satellite rainfall and temperature estimates. For instance, Viste et al. (2013) examined 

meteorological drought in Ethiopia using SPI from 1970 to 2011 and using data from the Global 

Precipitation Climatology Project. According to their study, on a national level, 2009 was identified as the 

second driest year, following 1984. In the 1984 drought over the Afar region, all districts were affected 

by the failure of seasonal rain (received only 18% of its expected mean annual precipitation) (Viste et al., 

2013). Ashenif (2016) examined drought over the Afar region using SPI. The results showed extreme 

drought in the region in 2005, 2009, 2011, and 2015. In our study, we used >70% of the available climatic 

stations in the Afar region and deployed downscaled ERA5 reanalysis to fill the gaps in the observations. 

In addition to the SPI, we evaluated SPEI to consider the region's ongoing global warming and drought. 

The calculated drought indices are also associated with crop yield to understand the impact on the 

agricultural sector.   

The temporal assessment of meteorological drought revealed that severe and extreme drought prevailed 

during the last 40-year period (1981-2020). The drought characteristics of both SPI and SPEI were 

consistent at different time scales. They well captured the historically known droughts during the last 40 

years, particularly the more severe and extreme ones during the last 20 years. For example, the years 1984, 

2008, 2009, and 2015 were considered to be the driest years across nearly all locations with varying levels 

of severity (Viste et al., 2013; Eze et al., 2022). Drought occurrences before 1970 were at least once every 

ten years; they have become more frequent and recently occurred every two or three years with varying 

severity (Gebrehiwot et al., 2011).  

The spatial pattern of drought events at the 3-month time scale during the 1981-2020 period across the 

study area showed frequent drought prevailed with varying severity. The most severe and recurrent 

drought was recorded in Afar's southern and southwestern parts, particularly in the Gewane and Awash 

clusters under a medium-range time scale and in a few areas at the Dubti cluster, respectively. Under a 

longer time-scale, the most intense and frequent drought was recorded at the Dubti cluster (Figure 5a-f).  

Our analysis shows that drought frequency and magnitude will likely increase. For representative stations, 

drought frequency is projected to increase in the near term (~10%), mid-century (~20%), and end of the 
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century (>40%) (Figure 7). Similarly, drought magnitudes will also increase in the future compared to the 

present due to the ongoing climate forcing – increased temperatures and increased drying (Aiguo et al., 

2004) (Figure 8). Studies have reported that increased global mean temperatures (Trenberth, 2005) may 

trigger more evapotranspiration and, thus, surface drying, thereby increasing drought intensity (Orke & 

Li, 2022).  

There is a difference in the variance explained in yield by SPI and SPEI. This is resulted, for example, 

while the SPEI defined more drought as severe and moderate drought with long duration and increasing 

intensity, SPI determined more extreme drought than those detected by SPEI. Our findings show that crop 

yield losses (~3-17 qt/ha compared to the mean yield) in 1994-1995, 1999-2000, 2008-2009, and 2019 

coincided with severe droughts. Overall, crop yield is strongly associated with calculated drought indices 

(r2 of 0.56 for SPI and 0.18 for SPEI) (Figure 9). Moreover,  it is noted that Ethiopian agriculture is mainly 

(>95%) rain-fed agricultural system (Minda et al., 2018). For example, a catastrophic crop loss was 

observed during the 2015 drought in the Tigray region (Eze et al., 2022). Reduced rainfall and increased 

evapotranspiration enhance drought occurrence, reducing soil moisture and the consequence impact of 

crop failures during the crop growing period. Alternative measures such as rainwater harvesting, 

supplementary irrigation practices, and drought-resistant crop varieties can be suggested to mitigate the 

recurrent drought impacts in the agricultural sector in the pastoralist region. Drought monitoring and early 

warning systems can be established and applied (WMO, 2006).   

5 CONCLUSIONS 

This study examined meteorological drought affecting agricultural productivity in the Afar region, 

northeast Ethiopia. It is mainly a pastoralist region and is among the frequently drought-affected areas in 

the country. Therefore, we evaluated the occurrence of meteorological drought using the present and future 

climate datasets. We also examined the relationship between drought and crop yield. To this end, we 

deployed 44 surface climatic stations in the Afar regional state to obtain daily precipitation and minimum 

and maximum temperature data. This data is evaluated for quality, and the missing records are filled out 

from the CHRIP dataset. To project the future drought, we used regionally downscaled models of the 

CMIP5 product. The data is corrected for biases. We systematically clustered the study area into four 

homogenous precipitations and calculated the standardized precipitation and evapotranspiration 

meteorological drought indices for temporal and spatial drought evaluation. The regional average cereal 

yield dataset correlates the drought estimates calculated by the indices to evaluate drought impact.  
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Therefore, our first research question was formulated as to how the spatiotemporal variation of drought 

has been characterized during the last 40 years. Our result shows a frequent occurrence of drought with 

varying degrees of severity. The years 1984, 2008, 2009, and 2015 are the driest years across all the 

meteorological stations. The most frequent drought was exhibited in the region's central, western, and 

southern parts, while the most intense drought prevailed over the Agroba cluster. Our second research 

question was related to quantifying the expected changes in drought magnitude and frequency in the 

coming decade compared to the base period. Our findings show that the average change in projected 

drought indicates more frequent and intense droughts will likely increase in the middle and end of the 

century than in the reference period. Our third research question was to analyze the association between 

meteorological drought and rain-fed cereal crop productivity. In this regard, our findings show that the 

annual yield variation explained 56% and 18% for the Meher (Kirment) harvesting season quantified 

jointly in the variation of SPI and SPEI, respectively. 
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CHRIP data is available at https://data.chc.ucsb.edu/products/CHIRP/daily/netcdf/. AgERA5 data is 

available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-
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