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Abstract 

Flood risk management has been severely constrained by limited information on the causes and impacts of flooding. 

In this study, we evaluated the effect of short-term land cover change of Logiya Catchment on flood inundation to 

impact Dubti town and its surroundings in the Lower Awash Basin, Ethiopia. We used Sentinel-1 Synthetic Aperture 

Radar (S-1 SAR) data to detect flood but Sentinel-2 (S-2) optical satellite data to classify land cover by applying a 

machine learning algorithm. We also used land cover and soil data to generate the Curve Number (CN) map of the 

study area from 2017 to 2023. The flood maps showed that roads and irrigation canals were washed away by the 2020 

extreme flood, which led to the inundation and abandonment of the Tendaho Irrigation Scheme. The runoff generation 

potential (CN) was above 27% at the Logiya Catchment from 2017 to 2023, contributing to severe flooding. The 

remote sensing analysis showed that overflow of the Logiya River in 2020 was intercepted and conveyed by the main 

irrigation canal of the Tendaho Scheme resulting in inundation of the Dubti and its surroundings.  The flood extent at 

Dubti and its surroundings was 59.22 km2 in 2020. It increased by 26% from 2017 to 2019. Frequent (6-days), high 

resolution (10m) and time-series 7 years Sentinel-1 data helped to get a detailed characterization of the cause, 

dynamics, and impacts of the historical flood events. The approach and results of this study can guide flood risk 

management in the study area and serve as a reference for future studies in other flood affected areas.  
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1. INTRODUCTION 

In Ethiopia, flooding is a major natural hazard that hinders economic development and causes loss 

of human life (Tamiru & Dinka 2021;  Bibi et al. 2023). In 2016, flood damaged households (6249 

USD) and farmland (5326 USD) in central rift-valley basin  (Edamo et al. 2022). Major cities of 

the country such as Addis Ababa, Adama, and Dire Dawa are under flood risk. Specifically, 25 % 

of Adama city is vulnerable to flooding (Leta & Adugna 2023) and  44,544 and 77,320 buildings 

in Addis Ababa are exposed to floods of 1-in-5 and 1-in-100 years return, respectively (Carr et al. 

2024; Asfaw et al. 2025). The flood risk of these cities can be associated with low coping capacity 

(Erena & Worku 2019) and bio-physical factors. Hence, flood studies are essential to enhance the 

coping and adaptation capacities of the cities and towns of Ethiopia (Haile et al. 2024).    

Stream-flow monitoring in Ethiopia is hampered by the decline of ground-based monitoring 

stations that often do not cover flood prone areas (Haile et al 2022). As a result, flood risk 

management is commonly based on limited data and knowledge about past floods. Earth 

observation satellite can fill such data gap by monitoring during both day and night as well as in 

all weather conditions (Li et al. 2018). Optical remote sensing satellites incapable monitor floods 

during cloudy seasons (Munasinghe et al. 2023; Matheswaran et al. 2019). The S-1 SAR provides 

images at 10 meter horizontal spatial resolution every 12 or 6-day intervals subject to geographic 

locations (Mohammadi et al. 2020). However, the S-1 data requires pre-processing to minimize 

the effects of buildings, vegetation (Nuthammachot et al. 2017), and topography (Zeng et al. 2020) 

on the imagery.  

Low signal backscatter intensity of S-1 SAR indicates flooded surface. This can be distinguished 

from non-flooded surface by histogram thresholding (Cao et al. 2019) and/or change detection 

(Clement et al. 2017). The accuracy of these methods can be enhanced using ground based 

reference data (e.g. Bekele et al. 2022). Obtaining such data may not be easy owing to the 

limitation of existing ground-based measurement equipment.  As a result, proxy data is often used 

to calibrate or validate flood maps while some researchers use secondary data as ground-based 

reference data. Using the flood data from the S-2 optical imagery as a reference, Kianfar  (2019) 

reported 68% accuracy in the flood map generated using the S-1 SAR data. Using field surveyed 
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data and flood maps generated by the community as a reference, Haile et al (2023) reported 95% 

accuracy of the flood map detected from S-1 SAR data.  

Flood can be intensified owing to changes in the runoff generation potential (Curve Number) of 

the upstream catchments. The Curve Number (CN) can serve as a proxy to estimate the surface 

runoff generating potential based on the land use and soil characteristics of the catchment (Prabhu 

et al. 2020). Changes in CN can be caused by urbanization (Miller et al. 2014), deforestation, 

agricultural practices and ecological transformations (Fang et al. 2022). Hence, time series land 

cover classification enables monitoring of changes in CN across a catchment. Machine learning 

(ML) algorithms are receiving popular applications for land cover classifications (Dash et al. 

2023). However, these algorithms remain confusing while classifying the built-up and sandy areas, 

and irrigated and  shrub land cover classes (Thakkar et al. 2017). However, classification accuracy 

of shrub and pasture land can be improved using remote sensing indices (e.g. Normalized 

Difference Vegetation Index, NDVI) to train Machine Learning (ML) algorithm. Manandhar et al 

(2009) applying a rule (knowledge based logic) to differentiate built-up area from vegetation land 

increased the land cover accuracy from 70 to 90%. Dash et al (2023) detected the water body using 

Normalized Difference Water Index (NDWI) and manually digitized the sandy area following the 

drainage network of the catchment. Thus, sandy area was excluded from training the ML algorithm 

to reduce the commission error in built-up and overlaid to enhance the overall accuracy of land 

cover from 67 to 82 %. These studies indicated that post-classification can enhance the accuracy 

of land cover classification using ML methods.  

This study examines the interaction between flood and land cover in the flood-prone area of Lower 

Awash Basin, Dubti, Ethiopia. It uses the CN difference between 2017 and 2023 to assess the 

effect of temporal variability of land cover on the flood generation potential of the Logiya 

Catchment. The study also examines the inter-annual variability of flood extent and impact in the 

surrounding of Dubti town.  

2. Description of the Study Area 

Logiya is an upland catchment that drains from the northern upstream parts of the Awash Basin in 

Ethiopia. Geographically, the catchment is located between 39.5o to 41.0o E and 12.1o to 11.6o N. 

The Logiya River joins the Awash River just downstream of the Logiya Bridge. The catchment 
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covers an area of 4687 km2 and has a high potential to generate significant flooding because of 

steep terrain slope and sparse vegetation cover while the flood affects the Ethio-Djibouti road 

between Logiya and Semera town.    

The terrain elevation of the catchment varies from a maximum of 3602 m to 376 m a.m.s.l. 

Moderate slopes (5 to 10 %) cover 24 % of the catchment. The steep and extremely steep slopes 

(> 15 %) that generate rapid surface runoff cover 14 % of the catchment.    

The Logiya Catchment is dominantly covered with farmland, mixed forest, shrub, and bare-land. 

The eastern upstream part of the catchment is dominantly farmland, while the middle to 

downstream parts are dominantly bare-land and shrubs.  Based on the runoff generation potential, 

the soil of the catchment is categorized into three hydrological soil groups: A, B, and D. 

Hydrological soil group D, with high runoff potential covers 76% of the catchment while 

hydrological soil group A and B cover 5 and 19 %, respectively.   

Dubti, situated at the downstream part of Awash Basin, has a population density of 20.6/km2 1.  

The main irrigation canal of the Tendaho Irrigation Development Project conveys water through 

the town to irrigate the surrounding agricultural lands. (Figure 1 (d).  

The climate of the lower Awash Basin is divided into three seasons: dry season (Bega) from 

October to February, short rainy season (Belg) from March to June, and wet season (Kiremt) from 

July to September (Malede et al. 2024; Taye et al. 2018 and Haile et al. 2023). 

 
1 https://www.citypopulation.de/en/ethiopia/admin/afar/ET020101__dubti/ 
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Figure 1. Location map of the study area, (a) location of Awash Basin in the Ethiopia, (b) the Logiya Catchment 

(yellow polygon) and flood prone area of Dubti (red rectangle), (c) the elevation map of Logiya Catchment and (d) 

Dubti and other nearby towns.  CR represents main canal with access road stretching along the canal and numbers 

indicate the various canals 

3. Materials and Methods 

3.1. Materials  

The data inputs of this study were Ground Control Points (GCPs) collected from the field and  

Google Earth images; community consultation (to select the study site of Logiya Catchment and 

historical flood extent delineation) (Haile et al. 2023); satellite images (S-1 SAR and Sentinel-2); 

and global datasets (250m resolution soil data and elevation data)2. As there was no registered 

flood parameter data, the researchers consulted with the community to identify the maximum flood 

extent that occurred in 2020. Thus, the flood extent map generated by the community was used to 

train and validate the remote sensing index used for flood monitoring.    

 
2 https://www.isric.org/explore/isric-soil-data-hub 



Tilaye et al. /EJWST. Volume:7:1-19 /2024 (ISSN: 2220 – 7643) 

 

6 

 

The Digital Elevation Model (DEM) of 30m horizontal spatial resolution from Shuttle Radar 

Topography Mission (STRM) was used to reduce the shadow effect in flood mapping using S-1 

SAR. S-2 was used to detect the land use and land cover.  

The land cover map was detected using a Classification and Regression Tree (CART) machine 

learning algorithm. It performed better than other machine learning algorithms existed in Google 

Earth Engine (GEE) cloud computing platform for land cover classification in upper Awash Basin 

(Negash et al. 2023; Bekele et al. 2022). We used a Root of Normalized Image Difference method 

selected by Haile et al (2023) for flood detection using S-1 SAR images at the Awash Basin from 

2017 to 2022. However, in this study, flood map was extended to 2023 so as to identify new flood-

affected area and associated impact.   

3.2. Methods  

Pre-processed S-2 and S-1 satellite imageries were used to generate multi-temporal land cover and 

flood maps respectively in the GEE platform (Gorelick et al. 2017). The S-2 dataset was filtered 

using cloud probability pixels and Air Quality band (Q60) to obtain cloud-free images. The Ground 

Range Detection format of the S-1 SAR, with VH polarization undergoing radiometric and 

geometric correction, was employed for flood monitoring. However, the speckle noise of S-1 

imageries was filtered using a 3x3 median filtering approach widely used for flood monitoring 

(Kianfar 2019; Anusha & Bharathi 2020) . To reduce the shadow effect, the S-1 SAR images were 

laid to mask the terrain with a slope above 2%.  In this study, the start of the analysis period was 

2017 considering the joint availability of S-1 SAR and S2 satellite images. 

3.3. Land Cover mapping  

GCPs were collected from Google Earth images while field survey was done to train and validate 

the ML algorithm of land cover mapping.  During the field survey (14 to 18 July 2023) at Dubti 

flood-prone area, six major land cover classes were identified: agricultural land, bare-land, built-

up, mixed forest, shrub land, and water body. Thus, 121 GCPs from both homogeneous and mixed 

land cover classes with land size of at least three-pixel sizes of S-2 (30x30m) image were collected. 

Then, additional 193 GCPs were collected from Google Earth Satellite image based on knowledge 

of the study site, and were used to train the ML algorithm.  Based on previous research experiences, 

at least 30 GCPs per each land cover classes should be used to train the ML algorithm during LC 
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classification. These, ground truth data collected during filed visit in 2023 was used to validate the 

ML algorithm performance in land cover classification by using confusion matrix. 

At Logiya Catchment, 214 GCPs were collected from Google earth images guided by Normalized 

Difference Water Index (NDWI) to distinguish the water body and Normalized Difference 

Vegetation Index (NDVI) to identify shrub land from bareland in 2023. Similarly, 153 GCPs were 

collected to classify the 2017 land cover. Then, the 2017 and 2023 land cover maps were used to 

examine the land cover change effect in the runoff generation potential of the catchment.  

3.4. Accuracy assessment  

In this study, the confusion matrix that contained (n x n) row and column size was constructed. In 

this case, ‘n’ referred to the number of land cover classes. The matrix showed (number of GCPs 

collected from different land cover classes during actual field observation) laid under different 

land cover classes detected from remote sensing. The diagonal element of the matrix indicated the 

number of correctly classified land cover classes compared with actual field observation.  Then, 

the overall accuracy was determined by the percent of accurately classified land cover (the sum of 

diagonal elements of the matrix) compared with the total GCPs (Rwanga & Ndambuki 2017).   

To determine producer’s accuracy, the number of correctly classified reference GCPs of each land 

cover class was divided by the total number of reference GCPs laid in a particular land cover class. 

On the other hand, user’s accuracy was determined when the number of correctly classified 

reference GCPs was divided by the total number of classified pixels in that class. The omission 

and/or commission errors are calculated by subtracting the producer’s and user’s accuracy from 

100%, respectively.  

In post land cover classification, the built-up and irrigated land were masked in re-classifying the 

land cover map of flood prone area. Thus, used to reduce the commission and omission error 

reported between built-up and sandy area, and shrub land and irrigated (Manandhar et al. 2009). 

Therefore, the accuracy of land cover map of 2023 Dubti flood prone area before and after post-

processing was determined by reference GCP collected from the field.   

 

 



Tilaye et al. /EJWST. Volume:7:1-19 /2024 (ISSN: 2220 – 7643) 

 

8 

 

3.5. Land cover effect on flood generation  

The change in runoff generating potential of Logiya Catchment was examined by using the land 

cover map of 2017 and 2023, and soil data collected from global dataset. The soil data was 

reclassified with the hydrological soil group of A, B, and D.  The reclassified soil data and land 

cover map were jointly used to estimate the CN, a proxy for runoff generation potential (Prabhu 

et al. 2020). In this study, the difference in the CN maps of 2017 and 2023 was reclassified into 

five classes (less than -20, -5 to -20, -5 to 5, 5 to 20, and greater than 20). Negative CN differences 

represented reduction in runoff generation potential, while differences between -5 and 5 indicated 

no change in runoff generation. However, pixels with values greater than 5 showed increased 

potential to generate runoff and contributed to flood generation over the downstream flood-prone 

sites.  

The Root of Normalized Image Difference method was used to extend flood maps from 2017 to 

2022, as reported by Haile et al (2023) to 2023. The method performed better in accuracy when 

validated through flood map generated by participatory mapping involving the community 

members. Reference is made to Bekele et al (2022) for detail about the RNID flood detection 

method. This study examined new flood-affected areas and their interaction with local 

environment, examining floods detected from 2017 to 2019, 2020.  Figure 2 showed the workflow 

diagram of this study.  

 

Figure 2. Workflow diagram synthesizing the methods of this study 
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4. Results and Discussion 

4.1. Land Use classification 

In this section, the land use maps of Logiya Catchment, Dubti flood-prone area, classification 

accuracy, CN difference, and flood maps were presented and interpreted.  The 2017 and 2023 land 

cover maps of Logiya Catchment and Dubti flood-prone area were compared. 

In 2017, the middle and lower parts of the Logiya Catchment were dominated by bareland and 

shrub lands, while disconnected agricultural land dominated the upper part of the catchment 

(Figure 3a). In 2023, agricultural land concentration increased in the western (upstream) part and 

expanded in small pockets to the other parts of the catchment, reducing shrub and bareland (Figure 

3b). Some disconnected agricultural land were connected, while mixed forest areas increased in 

the western upstream part. 

 

Figure 3. (a) the 2017 LULC map, and (b) the 2023 LULC map of Logiya Catchment 

Table 1 showed the percentage of each land cover class of Logiya Catchment in 2017 and 2023. 

All land cover classes experienced a change within these years. From the perspective of runoff 

generation, the major changes were expansion of the bareland, farmland and built-up area and 

reduction of the shrub land. The land cover classes that experienced expansion enhanced runoff 

generation in the catchment to affect the downstream area. However, the increasing of mixed forest 

reduced runoff though it increased by more than two-folds in Logiya Catchment. 
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Table 1. Percentage of each land cover class of Logiya Catchment in 2017 and 2023  

 Percentage of area coverage  

Land Cover type  2017 2023 

Bare land  59.83 66.32 

Built-up  0.02 0.22 

Shrubland  27.76 16.36 

Farmland  10.89 13.24 

Mixed forest  1.47 3.81 

4.2. Curve Number Difference and Flood Interaction  

Figure 4 showed positive CN differences between 2017 and 2023, slightly surpassing the negative 

differences suggesting most parts of the catchment experienced increased runoff generation 

potential. Positive CN differences reported near the catchment outlet had a potential to generate 

flash floods during intense rainfall conditions. This was in agreement with the opinion of some of 

the residents in Logiya. They believed that flash floods were common in the area. The positive 

differences over the upstream part could also be concerning as these areas were characterized by 

steep slopes that enhanced flood generation potential of the catchment. Most of the middle part of 

the catchment did not experience a significant change in potential runoff generation between 2017 

and 2023.  

 

Figure 4. The difference in CN of the Logiya Catchment between 2017 and 2023  
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Most parts (81.22 %) of the catchment had insignificant CN differences (-5 to 5), from 2017 to 

2023 (Table 2). The CN differences were positive only for about 10% of the catchment. However, 

these positive differences occurred near the catchment outlet and over steep topography that led to 

increased runoff-generating potential of the Logiya Catchment. This was in agreement with 

observations of the community in Logiya and Dubti towns.  

Table 2. Area coverage of the Logiya Catchment under different categories of CN difference 

between 2017 and 2023   

Curve number difference                                                        Percent of coverage (%) 

-20 to -36 0.28 

-20 to -5 7.34 

-5 to  5 81.22 

5 to 20 10.55 

20 to 36 0.60 

4.3. Flood Interaction with Infrastructure in Dubti  

From 2017 to 2019, the flood caused by Logiya River was not hydraulically connected to the flood 

caused by Awash River, Box 1 Figure (5a). This matches with what the locals told us during the 

field visit. From 2017 to 2019, the flood did not affect Dubti town which was protected by the road 

that was constructed parallel to the main irrigation canal (CR1) (Box 2).  Boxes 3 and 4 showed 

areas not affected by flood. The irrigated land and road (solid red dot) were not damaged by floods 

from 2017 to 2019.  

Extreme flood in Awash Basin, particularly in Dubti, was reported in 2020. The flood washed 

away and damaged the roads and canals constructed for the Tendaho Irrigation Development 

project figure (5b). The Awash River and the flood-prone areas were connected during the 2020 

extreme event, Box 1. The irrigation canal conveyed flood water (Box 1) toward Dubti town but 

then breached and washed away the roads and canals (CR3 and CR4). This created a new flood-

prone area to increase the flood impact toward Box 4. 
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Figure 5. The flood map detected from 2017 to 2019 (a) and 2020 (b), at the flood-prone area of 

Dubti site and its surrounding sites  

4.4. Flood Impact on Land Use and Land Cover Change 

Table 3 showed the land cover classification accuracy of flood-prone area before post-processing. 

The accuracy was 73 % which was  smaller than the minimum accuracy requirement, 85% 

(Rwanga & Ndambuki 2017). The user’s and producer’s accuracy were also low and varied from 

62 to 76 % and 60 to 90%, respectively. The lowest accuracy was obtained for bare land, shrub, 

and irrigated lands. Some of the irrigated lands were correctly classified as shrub land and bare 

land which were, however, misclassified as irrigated land.  

Table 3. The Confusion Matrix of the 2023 Land Cover Map, before Post-processing 

  Reference data    

LC type  Shrubland Irrigat

e  

Built-up Bareland  Total  User’s accuracy  

Shrub 15 5 0 4 24 62.5 

Irrigate  5 25 0 5 35 71.4 

Built-up 2 1 26 3 32 76.5 

Bareland  3 1 3 23 30 71.9 

Total  25 32 29 35    

Producer’s accuracy   60.0 78.1 89.7 65.7  Overall accuracy  

            73.6 

The overall accuracy of the 2023 land cover map after post processing showed increment of 85.12 

% by reducing the omission errors reported in the built-up and shrub lands (Table 4). The user’s 

and producer’s accuracy enhanced from 79 to 87.5 % and from 76 to 93.33 % respectively. The 
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bare land with gravel introduced a commission error in the irrigated and shrub lands, while the 

sand was detected as a built-up to reduce the user’s and producer’s accuracy. The overall accuracy 

reported in this study substantially improved after post-processing and indicated that the land cover 

map could be used for evaluating the impact of floods and vice versa.  

Table 4. The Confusion Matrix of the 2023 Land Cover Map, after Post-processing  

   Reference data    

LC type   Shrub land Irrigate  Built-up Bare land  Total  Users accuracy  

Shrub  19 3 0 2 24 79.2 

Irrigate   3 30 0 2 35 85.7 

Built-up  1 1 28 2 32 87.5 

Bare land   2 0 2 26 30 86.7 

Total  25 34 30 32    

Producer’s 

accuracy 

 76.00 88.24 93.33 81.25  Overall accuracy 

85.12 

The flood impact was not limited to damaging irrigated canals and roads, but it also affected the 

irrigated land.  Figure 6 (a) and (b) showed the 2017 and 2023 land cover at the flood-prone site 

of lower Awash Basin, Dubti. The irrigated land of the Tendaho Irrigation Development Project 

was abandoned and converted to shrub land in the 2023 LC map because of the 2020 flood impact. 

In 2023, the built-up area in the surroundings of Dubti, Logiya, and Semera towns expanded to 

alter the local flood characteristics (informal communication with the Dubti town community 

during field observation).   

 

 

Figure 6. The 2017 and 2023 land cover maps of flood prone area shown in (a) and (b) respectively 

0 5 102.5

km

LC types

 Bare land

Built-up

Shrubland

Water body

Irrigated
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The bare land and shrub land dominantly covered the surrounding of Dubti town. The shrub land 

expanded because of the 2020 flood at the expense of the bareland and irrigated land (Table 5).  

Table 5. Land Cover Classes in 2017 and 2023, at Dubti town and its surroundings 

  Area coverage percentage  

LULC type detected 2017 (%) 2023 (%) 

Bare land 57.25 59.36 

Built-up 0.56 0.85 

Shrub land 21.49 24.65 

Water body 2.08 2.02 

Irrigated land 18.62 13.13 

4.5. Discussion 

The flooding in the lower Awash Basin was often associated with overtopping of the main Awash 

River with limited focus on the contribution of the tributaries. In this study, remote sensing data 

helped to study past floods and the contribution of the Logiya River. The remote sensing-based 

analysis was supported by field survey and community consultation from 2017 to 2023. Edamo et 

al (2022) emphasized that lack of community participation might limit flood risk management 

effectiveness.  

Flooding was a major natural disaster that often displaced many people, but lack of ground-based 

data had hidden its historical characteristics and scientific evidence to manage and provide 

adaptation for future flood risk events. Satellites monitored the land surface at relatively short time 

interval to detect changes in the feature owing to flooding. The S-1 SAR operated over the land 

surface at day-night and any weather condition, while the S-2 optical image was suitable to assess 

the land cover and land use features.  

Field observation and consultation with the local community allowed to fill the information gap 

that couldn’t be provided by remote sensing images (e.g. the flood interaction with infrastructure) 

and identify factor contribution for flooding. However, flood index accuracy could be affected by 

how threshold values were determined, i.e., either globally or locally to detect flooded pixels.  The 

S-1 SAR polarization affected the accuracy of the flood map (Bekele et al. 2022). Therefore, flood 

maps generated by VH and VV polarization were compared using ground truth data.  
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The findings of this study suggested that the positive CN region of Logiya Catchment could be 

treated by nature based solution e.g. tree planting to reduce the runoff generation potential and 

flood effects on Dubti. Negash et al (2023) demonstrated that expansion of built-up and 

agricultural area upstream of a catchment enhanced flood generation potential. The current study 

showed that enhanced changes in land cover were observed on steep slopes and near the catchment 

outlet and could have significant effects on flood generation to affect the downstream people and 

property.  

So far, most previous studies focused on how floods impacted various land cover and land use 

classes (Zope et al., 2016). However, this study indicated that the infrastructure (roads and canals) 

influenced the spatial pattern of floods and associated impacts. Therefore, the planning, design, 

and construction of infrastructures should be based on water sensitivity and flood studies. For 

example, some infrastructures generated false sense of water security regarding flood protection 

(observed in field observation along the flood-plain of upper and lower Awash Basin). Around 

Dubti site, the main irrigation canal constructed by Tendaho Irrigation Development project 

conveyed the Logiya River overflows toward Dubti town and over the irrigated land during the 

extreme floods in 2020. This agreed with Njogu's (2021) research findings that the infrastructure 

development over flood-plains affected the flood characteristics. It suggested the need to consider 

the implications of infrastructures on flooding during the design and construction stages (Taye et 

al. 2024). Bekele et al (2022) showed that the Addis Ababa to Adama road and flood wall 

constructed by community intervened with the natural flow direction, contributing to the flooding 

in Akaki Catchment. 

The findings of this study could be enhanced through additional ground control points and the use 

of rainfall-runoff models. However, modeling applications were constrained by stream-flow data 

availability. Citizen science provided an opportunity to engage the public in generation of stream-

flow data and hydrological knowledge generation. However, there were only limited studies that 

applied citizen science for flood studies.  
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5. Conclusions and Recommendations 

In this study, the Sentinel-1 SAR and Sentinel-2 optical satellite images were used for historical 

flood and land cover change monitoring, respectively. The following conclusions were drawn 

based on the results of this study:-  

• The accuracy of land cover classification using CART could be enhanced using remote 

sensing indices for post-processing.  

• The remote sensing approach enabled the examination of the infrastructure impact on flood 

characteristics. Considering the rapid development of infrastructures in Ethiopia, potential 

interactions between infrastructures and floods needed to be investigated prior to 

infrastructure development.  

• High temporal revisit (6 days) of S-1 SAR images over the Dubti flood-prone area allowed 

reasonable representation of the spatial and temporal variability of flood characteristics. 

• Community consultation provided actual ground truth data to evaluate historical flood and 

fill the remote sensing gap. In detecting the flood interaction with infrastructure (road and 

irrigation canal) constructed at the flood-prone area.  

• Multi-causality of extreme flood events was identified in this study but it required further 

investigation across various flood prone areas.  
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