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Abstract 

Understanding temporal variations and source of precipitations is essential for effective water management and flood 

risk mitigations, especially in regions prone to heavy precipitation events such as the Kulfo watershed. This study 

aims to investigate the heavy precipitation patterns at Kulfo River Watershed using wavelet analysis and an advanced 

atmospheric model to identify temporal precipitation characteristics and trace moisture source regions. Daily 

precipitation data from 1991-2020 were collected from Ethiopian Meteorology Institute. Meteorological fields on a 

three-dimensional grid at 1o x 1o spatial resolution and daily temporal resolution were also obtained from Global Data 

Assimilation System (GDAS). Wavelet analysis of the daily precipitation processed with the lag-1 coefficient revealed 

high power recurrence once every 38 to 60 days at greater than 95% confidence for red noise. The analysis also 

identified inter-annual periodicity in the periods_ 2002 - 2005 and 2017 - 2019. Back trajectory analysis for 3-day 

periods up to a heavy precipitation day during the main and short rain seasons indicated the Indian Ocean and Gulf of 

Eden sources. Trajectories crossed the southern and eastern African escarpment to arrive at the Kulfo watershed. 

Atmospheric flows associated with the Western Indian monsoon redirected by the low-level Somali winds and Arabian 

ridge were responsible for the moisture supply. The spatial distribution of relative humidity (RH) during heavy 

precipitation events ranged from 50% to 88%. The findings indicated that the time-localization of the wavelet power 

spectrum yielded valuable hydrological information and the back-trajectory approaches provided useful 

characterization of air mass sources and pathways. 

Keywords:  extreme precipitation events, HYSPLIT Model, moisture source, power spectrum, Kulfo Watershed 

Received: 05 August, 2024; Accepted 10 September, 2024 Published: December, 2024 

  

 

Ethiopian Journal of Water Science and Technology (EJWST) 

      DOI:   https://doi.org/10.59122/18519g6 

      Vol. 7 , 2024, Pages: 33~53                         ISSN(Print): 2220-7643 

 

mailto:tesfaym270@gmail.com
https://doi.org/10.59122/18519g6


Tesfay Mekonnen. /EJWST. Volume: 7:33-53 /2024 (ISSN: 2220 – 7643) 

 

34 

 

1. INTRODUCTION 

Precipitation is a critical hydroclimatic variable whose spatial and temporal variability can 

significantly impact human health and livelihoods. Extremes in precipitation, such as droughts and 

floods, are directly linked to prolonged deficits or surpluses in precipitation. Heavy precipitation 

events can particularly cause extreme runoff that could damage the human and environmental 

systems (Knapp et al., 2008; Yisehak et al., 2020). Moreover, studies imply that the occurrence of 

heavy precipitations will likely increase under climate change. The Intergovernmental Panel on 

Climate Change Reinman, (2012) reports showed that there had been a more significant increase 

in the occurrences of heavy precipitations as compared to a significant decrease in many regions 

of the world. The report also stated that the frequency of heavy precipitation events would increase 

in many parts of the world in the 21st century.  

Another study by Scoccimarro et al., (2013) projected increasing precipitation events over India, 

Southeast Asia, Indonesia, and central Africa during boreal summer, as well as over southern parts 

of Africa and South America during boreal winter. Some of the previous studies of extreme 

precipitation events in Africa indicated that climate change could bring long dry seasons and short 

rainy seasons. In the East African region, the results of precipitation events by different researchers 

were inconsistent. For example, Ogega et al., (2020) projected that the number of consecutive dry 

days would increase while that of wet days would decrease. However, the United Nations Office 

for Coordination of Humanitarian Affairs OCHA, (2019), reported around 280 people might have 

died owing to flooding caused by heavy precipitations in 2019 in the region. Similarly, Wainwright 

et al., (2021) stated that in East Africa the 2019 October –December (OND) heavy rains were 

registered as one of the wettest seasons in recent decades.  

In Ethiopia, different patterns of precipitation have been observed at different spatiotemporal 

resolutions in recent decades. However, most of the studies were found to have inconsistent results. 

For example, studies on recent changes in precipitation amount and rainy days in Ethiopia by 

Seleshi & Zanke, (2004) found no significant trends. Similarly, Mekasha et al., (2014) found no 

significant trends of extreme precipitation from their study of 11 meteorological stations at three 

Ethiopian Eco environments. On the other hand, studies by Funk et al., (2012), reported a slightly 

increasing trend of heavy precipitations in southern and southeastern Ethiopia. Many studies were 
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conducted on the mean and extreme events of precipitation in and around Southern Ethiopia    

(Kebede & Bewket, 2009). These studies reveal mostly the trends in the past and upcoming recent 

decades. Hence, most of these studies were limited to assessing trends and changes in precipitation 

and variability, including extreme events. However, the analyses covers low spatial and temporal 

resolutions and consider only the main rainy seasons. 

 However, extreme precipitation events such as heavy precipitations occur at fine spatial and 

temporal resolutions from hours to a day and from a single station to small watershed levels. 

Moreover, the periodic nature of precipitation and the possible moisture source for heavy 

precipitations remained unrevealed by these studies. During July and August 2020, wide spread 

flooding affected several zones in Southern Ethiopia including Dawuro, Goffa, Gurage Hadya, 

Keffa, Silte, and South Omo zones, causing significant disruptions to livelihoods, infrastructure 

and agricultural activities in the region (OCHA, 2020). These recent occurrences have sparked 

worries and as a result of global climate change. Heavy precipitations will occur more frequently 

throughout the 21st century (Trenberth, 2011). Prolonged and intense precipitations have resulted 

in flooding and inundations in the Kulfo Watershed frequently, causing rivers to overflow and 

inundate areas along the river banks in lowland plains (Legese et al., 2020). 

The main aim of this study is to analyze the temporal patterns of heavy precipitation events and 

identify their associated moisture sources in the Kulfo Watershed, using daily precipitation data 

from 1991 to 2020 obtained from ground based hydrometeorological stations within the study 

watershed. The analysis included statistical summaries, wavelet, and backward trajectory tracers. 

While the statistical descriptions showed the general patterns of temporal precipitations in the area, 

the wavelet analysis revealed the temporal characteristics of precipitation. The backward trajectory 

analysis allowed to track moisture sources back in time for a heavy precipitation event and thus 

provided information about the transport paths involved and the corresponding relative humidity 

during the event day. Analysis of heavy precipitation events also had important implications for 

understanding rates of runoff and management of downstream flood hazards. Understanding the 

moisture source responsible for heavy precipitation could serve as a warning for adaptations and 

mitigations of climate shocks. 
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2. MATERIALS AND METHODS 

2.1 Description of the Study Area 

Kulfo Watershed is located at the central part of Ethiopian Rift Valley lakes basin, between 

37o18`E–37o38`E longitudes and 5o55`N–6o16`N latitudes (Figure 1). The watershed covers an 

area of about 500 km2  (Wankie, 2015).  Elevation of the catchment ranges from 1235 m to 3547 

m above the mean sea level (Temesgen et al., 2023). Kulfo River is one of the dominant rivers in 

the Abaya–Chamo sub basin system (Mena et al., 2024). It originates from Guge Mountain, 

flowing towards the east into Lake Chamo. The river serves as a potential source of water supply 

to the urban and rural communities. 

The climate of Kulfo Watershed is classified in the range between tropical to alpine because of its 

great difference in altitude and topographical elevation. The yearlong precipitation varies from 

750 mm in the dry lowlands near Arba Minch town to 2342 mm in the mountainous regions of 

Gerese, with an average annual precipitation of 1049 mm, and mean annual temperature 

fluctuating between 23.05o C and 25.87oC (Ayana et al, 2022). The precipitation distribution is 

bimodal with the main rainy season occurring from March to May and the second small rainy 

season from September to November (Mark, 2014). The watershed has an average slope of 16% 

and is covered dominantly by Cambisol and Regosol soil types. Besides, the soil type is 

characterized by shallow, moderate to deep, and very deep in depth and sandy clay to clay texture. 

As a result, severe land degradation resulting from soil erosion, flooding, sediment, and other 

materials are evident at Chamo Lake (Blumberg & Schütt, 2004). The major land use activity in 

the area is agriculture. However, agricultural productivity is limited owing to the frequent flood 

events associated with the heavy precipitations in the area  
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Figure 1.  Geographical location of the Kulfo watershed 

2.2 Data 

Precipitation data of the Kulfo Watershed was collected from the Ethiopian Meteorological 

Institute (EMI) from 1991 to 2020 at a daily time step. The meteorological stations used for this 

study covers long-range records, less discontinuity, and are contributing stations to the 

precipitation of the study watershed. The normal ratio method was used to fill the missing values 

of the daily time series. The method is widely used to estimate missing values at a station by using 

data from nearby stations and weighted based on their long term means (Singh & Woolhiser, 

2003). Before analyzing the wavelets and moisture source trajectory, the cumulative distribution 

function of daily precipitation was computed. The different cumulative frequency classes of the 

daily precipitation were calculated based on the World Meteorological Organization classifications 

(WMO, 2012). Table 1 illustrates the WMO standard precipitation intensity classifications. And, 

the precipitation days in the Kulfo Watershed from 1991-2020 are presented in Figure 2. Similarly, 

the very heavy precipitation days that occurred in the watershed are described in Table 2. 
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The other precipitation dataset was drawn from meteorological fields on a three-dimensional grid 

obtained from the Global Data Assimilation System (GDAS). These data sets were available at 

different spatial and temporal resolutions (Stein et al., 2015). The present study used the 1° × 1° 

spatial resolution and daily temporal resolution atmospheric fields. By utilizing the GDAS dataset 

with the specified spatial and temporal resolutions, the study aims to analyze and trace the 

trajectory of low-level atmospheric flow from a height of 10 meters above the ground at Kulfo 

Watershed. This information could be valuable in understanding the movement and behavior of 

precipitation patterns in the study area, shedding light on how meteorological conditions contribute 

to precipitation at Kulfo Watershed.  

Table 1. Classification of precipitation intensity based on the World Meteorological Organization 

Precipitation event Precipitation (Rf) intensity in mm/day 

Tiny rain Rf < 1 

Light rain 1 < Rf < 2 

Low moderate rain 2 < Rf < 5 

High moderate rain 5 < Rf < 10 

Heavy rain 10 < Rf < 50 

Violent rain Rf > 50 

Table 2. Very heavy precipitation days and amount of Precipitation (R) recorded in mm/day at Kulfo 

Watershed between 1991 and 2020 

Precipitation date R Precipitation date R Precipitation date R 

Year Month Day Precipitation 

date 

Month Day Precipitation 

date 

Month Day 

1991 8 23 54 2007 9 11 67.9 2015 4 25 60.5 

1992 6 24 71.2 2008 9 11 80.8   5 6 55.2 

9 23 50.1   9 24 58.7   10 19 53.7 

1993 5 22 40 2010 5 9 71.5   11 7 60.7 

1997 4 24 68.2 2011 5 19 64.5   12 6 54.4 

1999 10 13 75.3 2012 4 23 59 2016 4 26 58 

2000 5 5 54.3   4 26 50.8   6 17 56 

2005 4 23 102.4   9 4 59.7   11 27 57.7 

5 14 60 2013 4 9 55.2 2017 4 27 61.3 

2006 2 19 51.5   10 15 86.2 2020 8 31 68 

6 3 66 
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2.3 Wavelet analysis 

Wavelet analysis in the present study deals with the localization of the one-dimensional 

precipitation time series data into two-dimensional time and frequency signals. This helps to get 

information on both the amplitude of any periodic signals within the time series, and how this 

amplitude varies with time and depicts the evolution of scales and frequencies with time. The 

frequency analysis is more of identifying frequency domain of the time series than depicting some 

hydrological event occurrence for a particular return period. Wavelet analysis methods have 

functions capable of localizing time and frequency while decomposing several scales in the time 

series. 

In the present study the wavelet analysis procedure is adapted from (Chan, 2000). Hence, a wavelet 

transform can be defined as an integral convolution of a signal S(t) with respect to the family of 

functions (daughters) which are derived by stretching or compressing the analyzing wavelet 

(mother wavelet).  

𝜓𝑏,𝑎(𝑡) =
1

𝑎
1
2

𝜓 (
𝑡−𝑏

𝑎
)                                                                                                                                   (1)                  

Where 𝜓,  is the mother wavelet; 

                     a is scale parameter; 

                     b is position parameter 

The scale or dilation parameter is always >0 however, the value is less <1 when the wavelet is 

dilated in the frequency direction and contracted in the time direction. The reverse condition 

happens when the scale value is >1. The translation and dilation process are done for each signal 

at every point throughout the time series. 

The continuous wavelet transform is defined as the integral sum of the real signal and the scaled 

(compressed or dilated) signal. Continuous wavelet transform provides a smooth translation of 

wavelet power in terms of different wavelet coefficients from the analyzed signal of discrete time 

series (Torrence & Compo, 1998). In the present study, the continuous wavelet transform for the 

discrete precipitation time series is equated as, 

𝑊(𝑏, 𝑎) =
1

(𝑎)1/2 ∫ 𝜓⋆ (
𝑡−𝑏

𝑎
) 𝑠(𝑡)𝑑𝑡,                                                                                                 (2) 

Where 𝜓⋆ is the complex conjugate of 𝜓 
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From equation 2, we can calculate different wavelet coefficients and scale averages at different 

scale values between the start and end dates of the time series. The choice of scales in orthogonal 

transform is limited to discrete numbers. However, in this study, a none orthogonal wavelet 

analysis which use a range of arbitrary scales for the Morlet wavelet is applied as suggested by 

(Torrence & Compo, 1998). The time series can be worked out from 1D precipitation time series 

into 2D data of wavelet amplitude and phase.  

𝑠𝑗 = 𝑠02𝑗𝛿𝑗 , 𝑗 = 0,1, … , 𝐽

𝑎𝑛𝑑,

𝐽 = 𝛿𝑗−1log2 (𝑁𝛿𝑡/𝑠0)

                                                                                                                 (3) 

In this equation, so and J are the smallest and the largest possible scale values, respectively. The 

minimum scale parameter so is selected to approximate the equivalent Fourier period to form a 

time series of 2𝛿𝑡, while N𝛿𝑡 is the total length of the time series.  The number of sub-octaves in 

an octave 𝛿j is a positive value with a maximum of 0.5 sampling proportion in scale. Thus, the 

smaller the value of 𝛿j the finer would be the resolution of the wavelet spectrum. To minimize 

errors at the beginning and end of the wavelet power spectrum, the edges must be padded with 

sufficient zeros. This padded region, also called the cone of influence, is important in considering 

edge effects. On the other hand, the amplitude around the edges is discontinuous owing to the 

zeros filled and represented by the crosshatched regions. 

A region that exceeds a 95% confidence interval is drawn for the null hypothesis of the wavelet 

power spectrum to show if a peak power spectrum of the time series is significantly above the 

background power spectrum which is the red noise spectrum. 

The time averaged wavelet power over the period of the entire time series can be presented by the 

global power spectrum. This helps us to get information from the time-frequency distributions 

about how the power changes with time. The global wavelet power, 𝑊̅2𝑠(𝑏, 𝑎), over the entire 

time series s(t), can be estimated as:  

𝑊̅2𝑠(𝑏, 𝑎) =
1

𝑁
∑  𝑁−1

𝑏=0 |𝑊𝑠(𝑏, 𝑎)|2                                                                                                   (4) 
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2.4 Backward trajectories 

The Backward trajectory analysis employed in this study is a method used to track the movement 

of air masses in reverse, starting from a particular location and tracing them back through time. To 

identify their origins and possible resources of atmospheric components such as moisture or 

pollutants. This study employed a three-dimensional back trajectory analysis using the Hybrid 

Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model version 4.8 developed by the 

Air Resources Laboratory (Draxler and Hess, 1998). The HYSPLIT model is a widely used 

atmospheric dispersion model that simulates the movement and dispersion of air parcels by 

integrating the equations of motion for individual particles. The model considers various 

atmospheric factors such as wind speed, wind direction, and atmospheric stability to calculate the 

trajectory of air masses.  

This particular study calculated the back trajectories for three days at 10 meters above the ground 

level. This corresponded to a pressure level of approximately 1000 hPa above sea level. The study 

used a single source location and a three-dimensional velocity field to simulate the movement of 

the air masses backward in time. The starting time for the tracer release was set at 00 UTC. The 

trajectory ensemble option which starts multiple trajectories from the first selected starting 

location, was used in the present study form the three clustering methods.  

The back-trajectory analysis allowed researchers to identify the regions from which air masses 

originated and tracked their movement over time (Hess et al., 1998; Stein et al., 2015). By 

analyzing the trajectories, the researchers determined the potential source regions for pollutants or 

other atmospheric constituents that cause impact on a specific location. This analysis helped to 

establish source-receptor relationships, which were important for understanding the transport of 

pollutants, assessing the impact of emissions, and studying atmospheric processes. The first 

position of wind advection at the start point 𝑝(𝑡) is given as:  

𝑝′(𝑡 +  ∆𝑡)                                                                                                                                                      (5) 

Then the first and final guess positions of the trajectory can be estimated by equations (6) and (7) 

respectively by assuming the three-dimensional velocity vector.  

𝑝′(𝑡 + ∆𝑡) = 𝑝(𝑡) + 𝑉(𝑃, 𝑡)∆𝑡                                                                                                                (6) 

𝑃(𝑡 + ∆𝑡) = 𝑃(𝑡) + 0.5 [𝑉(𝑃, 𝑡) + 𝑉(𝑃′, 𝑡 +  ∆𝑡)]∆𝑡                                                                        (7) 
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3. RESULTS  

3.1 Statistical summary of precipitation 

Statistical description of the monthly seasonal and annual precipitation of the Kulfo Watershed for 

the period 1991-2020 is shown in Figures 2 & 3. Accordingly Figure 2 illustrates the cumulative 

probability distribution of the daily precipitation. Maximum precipitation was recorded in April, 

May, and October while minimum monthly precipitation was observed in January February, and 

December (Figure 3). Specifically, the highest monthly precipitation was recorded in May, but the 

least was observed in February. The standard deviation for the maximum precipitation was smaller 

than that of minimum precipitation, implying high variability during the dry months.  

Similarly, the seasonal and annual precipitation patterns were analyzed (Figures not displayed). 

The seasonal precipitation of Kulfo Watershed showed two peaks, during the main rain season 

(MAM), and the second main rain season (SON). MAM received 240.4 to 575.6 mm while SON 

received 164.9 to 682.8 mm. The precipitation of MAM was less variable when compared to SON 

during the study period. On the other hand, the annual precipitation received by the area ranged 

from 855.1 to 1700.2 mm. However, the annual precipitation showed high annual variation of 

about 500 mm particularly in recent years. (Yisehak et al., 2020) described that the Kulfo 

Catchment received 620 to 1250 mm precipitation annually. 
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Figure 2. Cumulative distribution of daily precipitation over the Kulfo Watershed; a) All values b) 

Precipitations between 10 mm and 50 mm and c) Precipitations greater than 50 mm. 

 

 

Figure 3. Box plot off Monthly precipitation over the Kulfo Watershed, 1991-2020 

Zigiti 

Zigiti 
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3.2 Wavelet Power Spectra  

Figure 4 shows a plot of the daily precipitation time series for the Kulfo Watershed from 1991 to 

2020 (a), the corresponding local wavelet power spectrum (b), the corresponding global wavelet 

spectrum (c) and its 95% confidence level for a red-noise process with a lag-1 coefficient. The 

concentration of power could be easily identified form the frequency or time domain in the figure. 

Significant high wavelet power was observed over 32-64 months for the entire length of the record. 

This is illustrated by the yellow contour band located between the 32-64 months in figure 4(b). 

This is also illustrated by the major peak in the global wavelet spectrum figure 4(c). The other 

notable periods of wavelet power included 16-32, 64-128, and 128-256 months which was shown 

by light yellowish bands. The 16-32-month power showed high variable wavelet power for most 

of the record. The 64-128 months wavelet power showed oscillatory wavelet powers with high 

powers from 1992-1998 and 2004-2015 and lower wavelet power from 1999-2003 and 2005-2020. 

The scale interaction from 35-64 and 64-128 months indicated frequency modulations from early 

days in the year to every five year, particularly during 1992-1998 and 2004-2015. The scale-

average wavelet power is a time series of the average variance in a certain band as presented in 

Figure 4(d). It illustrated the average of the wavelet power spectra over all scales and a measure 

of the average year variance over the entire time series. The semi-annual, annual, and biennial 

bands could be extracted by slicing the time series into corresponding scale averages; for example, 

2–8 months for semiannual, 6–12 months for annual, and 16-32 months for biannual bands. A 

multi-year scale cyclic variance could be seen in 2006-2011 with increasing of variance in the later 

years. The scale-average wavelet power was used to examine modulation of one time series by 

another, or modulation of one frequency by another within the same time series.  
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Figure 4. Wavelet spectral analysis of Kulfo Watershed for 1991-2020, (a) Normalized daily precipitation time series. 

(b) The wavelet power spectrum. The contour levels are chosen so that 75%, 50%, 25%, and 5% of the wavelet power 

is above each level, respectively. Cross-hatched region is the cone of influence, where zero padding has reduced the 

variance. Black contour is at 5% significance level, using a red-noise (α = 0.72) background spectrum. (c) The global 

wavelet power spectrum (solid line), red noise assuming a lag-1 of a = 0.72(dashed line). (d) Scale-averaged wavelet 

power (solid line), 95% confidence level (dashed line). 

3.3 Back-trajectories  

The Backward Moisture Source Analysis is a valuable tool in atmospheric science to investigate 

the origins of moisture that contributes to precipitation events. The three days back-ward trajectory 

of moisture source paths, vertical profile, and corresponding relative humidity distribution of the 
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Kulfo Watershed for the two seasons is presented in this section. The analysis was performed for 

two extremely heavy days: one from the main rain season, 21st May 2011 and one from the short 

rain season, 31st October 2020. The selection of these two seasons was to assess the seasonal 

difference in moisture sources and paths at Kulfo Watershed. The prevailing atmospheric 

circulation patterns during the analysis period showed a dominant movement of moisture-laden air 

masses from local to regional sources. 

The backward moisture source analysis for a three-day period back since 21st May 2011 was 

sourced from the southwest of the Indian Ocean near to Madagascar. The Indian Ocean source 

revealed significant insights into the moisture pathways and sources influencing precipitation in 

the study area. Moisture transport was dominated by distinct pathways which suggested a strong 

connection between the southeastern low-level flow and the moisture supply to the study area 

during the rainy season (Figure 5a). The relative humidity distribution showed a range of 3% to 

87% across the region, indicating the presence of favorable conditions for moisture accumulation. 

Higher relative humidity values were observed in moisture source regions; for instance, the 

southwest Indian Ocean (80%) while comparatively lower values were found in areas farther away 

(<50%) (Figure 5b). Localized variations in relative humidity were evident because of orographic 

effects or the influence of local topography. 

 

  

Figure 5.  Back-trajectory plane view of moisture source (left) and the corresponding relative humidity (right) of the 

Kulfo Watershed for 21st May 2011. 

a) b) 
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The Kulfo Watershed exhibited a combination of local and remote moisture sources, each making 

a significant contribution to the observed precipitation. The moisture source and pathways analysis 

conducted for a three-day period since 31st October 2020 revealed different insights into the origins 

of moisture comared to 21st May 2011. The analysis indicated that the Gulf of Aden served as the 

primary moisture source, contributing to the moisture influx, while the southwest Indian Ocean 

also accounted for the moisture supply (Figure 6a). The moisture pathways exhibited a dominant 

flow from the Gulf of Aden towards the study region, with some local moisture-laden air masses 

following this trajectory. Additionally, moisture sources around the study area, such as nearby 

water bodies and local evapotranspiration, contributed to the overall moisture availability. These 

findings raised our awareness about moisture dynamics at Kulfo Watershed and provided valuable 

information for water resource management and forecasting in the region. Figure 6b illustrates the 

relative humidity distribution which ranges from 11% to 88%. This wide range indicated 

significant variability in moisture content across the area. The maritime influence from the Gulf 

of Aden caused increased humidity levels in regions closer to the coast, particularly those adjacent 

to the  Gulf. As moist air travelledby prevailing winds, coastal and nearby areas experinced higher 

raltive humidity compared to locations farther away from the moisture source.  

 

  

Figure 6.  Back-trajectory plane view of moisture source (left) and the corresponding relative humidity (right) of the 

Kulfo Watershed on 31st October 2020. 

a) b) 
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4. DISCUSSIONS 

The analysis of heavy precipitation events at Kulfo Watershed showed the occurrence of frequent 

extreme events in the watershed. The statistical summary of precipitation showed that precipitation 

at Kulfo Watershed was highly variable and inconsistent from month to month and from season to 

season. The variability was, however, relatively lower during the main rainy months (MAM) as 

compared to the short rain months (SON) and the other dry months. Similarly, the annual 

precipitation showed variability inter-annually, with the increase of wet years in the last years of 

the study period. (Kuma et al., 2021) reported a trend of increasing monthly precipitation in April 

and January at Bilate Watershed from 1981-2008. Similarly, Funk et al. (2012) found a trend of 

rising precipitation which was not significant in the lowlands of southern and southeastern 

Ethiopia. 

The wavelet power spectra analysis revealed significant temporal variations in the intensity of 

heavy precipitation events. The results indicated dominant periodicities at multiple time scales, 

ranging from short-term oscillations to longer-term trends. For example, the analysis identified a 

significant increase in the intensity of heavy precipitation events at a decadal scale, indicating a 

possible influence of climate change on precipitation variability. The observed increase in heavy 

precipitation events aligns with previous studies conducted in southern Ethiopia. Gummadi et al., 

(2018), for example, indicated a statistically significant upward trend in the frequency and intensity 

of heavy precipitation events over the past three decades. Furthermore, (Belay et al., 2019) 

conducted a study on the interannual variability of precipitation in southern Ethiopia using 

satellite-derived datasets. The results showed the role of large-scale climate systems particularly 

El Niño-Southern Oscillation (ENSO) in shaping heavy precipitation patterns. Periods marked by 

El Niño events tended to correspond with heightened occurrences of intense precipitation across 

the study area.  

Finally, at Kulfo Watershed the primary sources of atmospheric moisture were found to shift with 

the season’s oceanic sources such as the Indian ocean and the Gulf of Aden. The moisture sources 

contributed more significantly during specific months, while continental moisture sources became 

more prominent during others. This seasonal variability suggested the need to account for broader 

regional meteorological dynamics analyzing heavy rainfall events in the area. (Dubache et al., 
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2019) investigated the relationship between the Indian Ocean Dipole (IOD) and precipitation 

variability in southern Ethiopia. Their analysis revealed a significant correlation between positive 

IOD events and enhanced heavy precipitation in the study area. These results suggested that 

regional climate modes such as Gulf of Eden, and ENSO and IOD played a role in modulating 

interannual variations in heavy precipitation intensity. Moreover, the analysis of relative humidity 

distribution during heavy precipitation events revealed distinct spatial patterns. Regions with high 

relative humidity were found to be closely associated with areas exhibiting enhanced precipitation. 

In addition to the seasonal and oceanic influences on moisture availability, topography, land use 

changes, and deforestation interacted with the atmospheric processes to shape local precipitation 

dynamics at Kulfo Watershed. The rugged terrain of the area enhanced orographic lifting, 

amplifying precipitation in elevated areas. This is particularly evident when moist air masses are 

funneled inland maritime sources like the Gulf of Aden. However, ongoing land use changes such 

as agricultural expansion, urbanization, and deforestation could significantly alter surface 

evapotranspiration rates, soil moisture retention, and local convective processes (Knapp et al., 

2008). These landscape modifications might disrupt the local moisture recycling mechanism, 

potentially intensifying dry spells or exacerbating flooding events (Ayele et al., 2024). Therefore, 

integrating land surface characteristics with atmospheric moisture tracking approaches would be 

vital for designing adaptive water management strategies responsive not only to seasonal climate 

patterns but also to evolving land use dynamics in the region.  

5. CONCLUSIONS 

In this study the wavelet analysis examines the temporal variations of extreme precipitation and 

the backward trajectory identifies the moisture sources and pathways associated with these events. 

The wavelet analysis revealed significant temporal variations in the intensity of extreme 

precipitation events, with dominant periodicities observed at multiple time scales. The findings 

indicated an increase in the intensity of extreme precipitation events at a decadal scale, suggesting 

possible influences of long-term climate variability or climate change on precipitation patterns at 

Kulfo River Watershed. These results contributed to a better understanding of the dynamics and 

variability of extreme precipitation events in the region. The backward trajectory analysis provided 

insights into the moisture sources and pathways contributing to extreme precipitation events. The 
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analysis identified specific source regions, such as nearby oceanic or continental areas, from which 

moisture was transported to the study area. This information was crucial for understanding the 

spatio-temporal patterns of moisture transport and the associated factors driving extreme 

precipitation events at Kulfo River Watershed. 

However, the methodologies employed in this study were not without limitations, which should 

be acknowledged for a balanced interpretation of the results. For example, the backward trajectory 

analysis helped trace moisture paths but had uncertainties due to course resolution and simplified 

assumptions of the GDAS model. Additionally, the complex typography of the Kulfo Watershed 

might introduce local atmospheric dynamics not fully captured by the trajectory model, potentially 

affecting the accuracy of moisture attribution. Similarly, the wavelet analysis, although effective 

in detecting periodicities in precipitation time series, relied on assumptions of stationarity within 

the segments of the signal, which might oversimplify the inherently nonlinear and chaotic nature 

of hydrometeorological systems. 

Overall, the research highlighted the importance of investigating extreme precipitation events and 

their underlying mechanisms in the context of climate variability and change. The findings would 

contribute to the scientific understanding of extreme precipitation at Kulfo River Watershed, 

aiding in the development of strategies for managing and adapting to these events. Further research 

would be required to explore the linkages between extreme precipitation, climate drivers, and 

potential impacts on the local environment and society. 
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