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ABSTRACT 

In this paper, Fourth-Order Compact Finite Difference method combined with Richardson extrapolation to solve the one-dimensional heat equation has 

been presented. The method is found to be fourth-order convergent in space and second-order in time variable. The method is also unconditionally stable 

and consistent for solving a one-dimensional heat equation. When combined with the Richardson extrapolation, the desired level of numerical solutions 

can be obtained without the requirement of further mesh refinement which claims extra computational time and memory.  To validate the applicability of 

the proposed method, two model examples are considered and solved for different values of spatial and temporal step lengths. The numerical solutions 

presented in tables and the simulations of the model problems show that the proposed method approximates the exact solution very well. In a nutshell, the 

proposed method is efficient and capable of solving the one-dimensional heat equation. 
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1. INTRODUCTION 

Partial differential equations (PDEs) are mathematical equations that play a significant role in modelling physical phenomena 

that occur in nature (sun et al., 2010). Because of the complex nature of many practical problems, the majority of the solutions 

of the PDEs are numerical (Chen et al., 2020). The parabolic equation is used to study diffusion and heat conduction problems. 

The main characteristic of the parabolic equation is that it models a transient state or evolution diffusion process and requires 

the specification of appropriate boundary conditions at all boundaries and an initial condition at the starting point of the evolution 

process (Necati et al., 2017). Because of its wider application in many natural sciences and engineering, the numerical scheme 

that solves parabolic equations often attracts the attention of many researchers (Samarskii, 2001, Dimove et al., 2016). A 

numerical technique for parabolic problems may fall under the following categories: the finite difference method (FDM), the 

finite element method (FEM) and the finite volume method (FVM) (Andrea and Vautard, 2001). Due to their easy 

implementations and computational efficiency, the finite difference methods are popular in solving parabolic equations (Zhang 

et al., 2012).  

Olusegun et al. (2017) used to solve One-Dimensional heat equation using the explicit finite difference method and concluded 

that the numerical solution is closer to the exact solution if the mesh size is further refined. However, when the mesh size is 

further refined the problem results in large system of equations which requires a large memory and long computational time. 

Benyam (2015) applied the explicit finite difference method and finite element method coupled with the Crank-Nicolson scheme 

for solving the one-dimensional heat equation.  Dabral et al. (2011) also used B-spline finite element method to approximate the 

one-dimensional heat equation and were able to produce an approximate solution that is in good agreement with the exact 

solution. Hooshmandsl et al. (2012) applied the Chebyshev Wavelets method to solve the one-dimensional heat equation. And 

the authors claim that the method is found to be accurate (in the sense of 𝐿2 and 𝐿∞ norms), simple and fast. However, the 

theoretical order of convergence and stability conditions of the method are lacking. Unlike the traditional methods such as FDM, 

FEM and FVM used to solve the one-dimensional heat equation, Tatari and Dehghan (2010) applied radial basis functions 

(particularly, Gaussian radial basis functions) to solve one-, two- and three-dimensional heat equations.  

The usual FDM shows shortcomings in computational accuracy. One technique to overcome such shortcomings is to refine the 

mesh which in turn leads to a large system of equations and hence will increase the amount of storage and CPU time (Chen et 

al., 2020). Another natural way to increase the accuracy and improve the order of convergence of the numerical solution is 

through the application of the Richardson extrapolation technique (Wang and Zhang, 2009, Gonzalez et al., 2010 and Liao and 

Sun, 2011). The technique is to approximate the difference method on two or more consecutive grids and then combine the 
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resulting numerical approximations using appropriate weights that depend on the order of the method in consideration (Marchuk 

and Shaidurov, 1983, Carlos et al., 2013). The third option is to use the compact finite-difference scheme for discretization of 

the PDEs which result in the ordinary differential equations (ODEs). The time discretization methods such as the Runge-Kutta, 

Predictor-Corrector, Cubic splines, etc. may be used to fully discretize the resulting ODEs (Chen et al., 2020). 

This paper aims to apply the fourth-order compact finite difference method combined with the Richardson extrapolation 

technique to the one-dimensional heat equations to generate a more accurate numerical solution. The order of convergence and  

stability conditions of the proposed method are also established.  

The rest of the paper is organized as follows: In section 2, mathematical formulation, order of the method, and stability analysis 

of the proposed method are carried out. The strategy how to combine the Richardson extrapolation with the proposed method is 

discussed in section 3. Validating the applicability and efficiency of the proposed method via numerical model examples is 

presented in section 4 and the paper ends with concluding remarks in section 5. 

2. MATHEMATICAL FORMULATION, ORDER OF CONVERGENCE AND STABILITY 

2.1. Mathematical Formulation 

The 1D heat equation with initial and Dirichlet boundary conditions is given by 

                                         
( )

( ) ( 
2

2

,( , )
0,1 0,

u x tu x t
T

t x



= 
 

                                             (2.1) 

 

subject to the initial condition 

                                           
( ) ( ),0 , 0 1u x f x x=  

                                                           (2.2) 

and the boundary conditions 

                                         1

2

(0, ) ( )
, 0

(1, ) ( )

u t g t
t T

u t g t

=
 

=
,                                                               (2.3) 

where 0   is the diffusive (viscous) coefficient, ( ) 1, ( )f x g t and 2 ( )g t  are smooth functions on the given domain. Let the 

solution domain    0,1 0,T  be divided into N and M  equal subintervals with uniform mesh sizes h  and k  respectively such 

that 0 , 0(1)ix x ih i N= + = and  0 , 0(1)jt t jk j M= + = .  
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From the Taylors series expansion, we have  

                

( ) ( ) ( )

( ) ( ) ( )

2 3 4 5
4 5' '' ''' 6

1

2 3 4 5
4 5' '' ''' 6

1

2 6 24 120

2 6 24 120

i i i i i i i

i i i i i i i

h h h h
u u hu u u u u O h

h h h h
u u hu u u u u O h

+

−

= + + + + + +

= − + − + − +

                                       (2.4) 

From Eq. (2.4), we obtain the following expressions           

                            
( ) ( ) ( )

2 2
3 5' 6

6 12
i x i i i

h h
u u u u O h= − − +                                                             (2.5) 

                           
( ) ( ) ( )

2 4
4 6'' 2 6

12 360
i x i i i

h h
u u u u O h= − − +                                                         (2.6) 

Using Eq. (2.6) into Eq. (2.1), we get 

                        ( ) ( )
2

42 6

12

i
x i i

u h
u u O h

t
 
 

= − + 
  

                                                                  (2.7) 

 

Differentiating Eq. (2.1) twice with respect to the spatial variable, we have 

                      

42

2 4

i iu u

x t x


   
= 

   
                                                                                         (2.8) 

Substituting Eq. (2.8) into Eq. (2.7), we obtain 

                   ( )
22 2

2 4 2 ''

212 12

i i i
x i x i i

u u uh h
u O h u u

t t x t
   



      
= − + = = −            

                    (2.9) 

Using Eq. (2.6) into Eq. (2.9), we obtain 

                    
2

2 2 41 ( )
12

i
x x i

uh
u O h

t
 

  
+ = + 

 
                                                                       (2.10) 
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The Crank-Nicolson discretization of the system of ode in Eq. (2.10) at a time level j  can be expressed as:  

                   ( )
1 22

2 1 41 ( )
12 2

j j
j ji i x

x i i

u u h
u u O h

k




+
+ −

+ = + + 
 

                                                   (2.11) 

Using     2 1 1

2

2i i i
x i

u u u
u

h
 + −− +

=   into Eq. (2.11), we get  

      
( ) ( ) ( ) ( ) ( ) ( )1 1 1

1 1 1 11 6 10 12 1 6 1 6 10 12 1 6j j j j j j

i i i i i ir u r u r u r u r u r u+ + +

− + − +− + + + − = + + − + +          (2.12) 

where            
2

.
k

r
h


=  

Eq. (2.12) is a fourth-order compact finite difference scheme for solving Eq. (2.1) with the prescribed initial and dirichlet 

boundary conditions. 

2.2. Order of the Method 

Let us write the difference equation in Eq. (2.12) as 

                                           
( ) ( )1, ,h h

i j i jL u x t R u x t+ =  

where 
1

( , )h

i j
L u x t

+
 and ( , )h

i j
R u x t  represent the expressions on the left and right hand sides of Eq. (2.12) respectively. 

We now plug the exact solution into Eq. (2.12) to obtain 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1 1 1

1 1 1 1

, ,

1 6 10 12 1 6 1 6 10 12 1 6

h h

i j i j

j j j j j j

i i i i i i

L u x t R u x t

r u r u r u r u r u r u

+

+ + +

− + − +

−

= − + + + − = + + − + −
                          (2.13) 

 If we expand ( )1,h

i jL u x t +  in terms of the Taylors series in space about the point ix  we have 
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( )

( ) ( )
( ) ( ) ( )

1

2 4 64 6
1 1 12

1 2 4 6

,

, , ,
12 , 1 6 ...

12 360

h

i j

i j i j i j

i j

L u x t

u x t u x t u x th h
u x t r h

x x x

+

+ + +

+

=

   
 + − + + +

    

 (2.14)          Expanding Eq. (2.14) 

using Taylors series in time about jt
 
gives 

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

2 3

2 3

1 2 3

2 3 4 4 42 2 4 6
2 2

2 2 2 2 4 2 2

, , ,
, 12 , 6 6 2

, , , , ,
1 6 ...

2 12 360

i j i j i jh

i j i j

i j i j i j i j i j

u x t u x t u x t
L u x t u x t k k k

t t t

u x t u x t u x t u x t u x tk h h h
r h kh

x t x t x x t x

+

  
= + + + +

  

      
− + + + + + 

         
                                  (2.15)              

Similarly, if we expand ( ),h

i jR u x t  in terms of the Taylors series about the point ( , )i jx t , we get 

   

( ) ( ) ( )
( ) ( ) ( )2 4 44 6

2

2 4 2 2

, , ,
, 12 , 1 6 ...

12 360

i j i j i jh

i j i j

u x t u x t u x th h
R u x t u x t r h

x x t x

    
= + + + + + 

     
                                              (2.16) 

Subtracting Eq. (2.16) from Eq. (2.15), we get the following expression:     

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2 2 3 3

2 2 2 3

2 2 2 3

4 3 4 62 2 6
2 4

2 2 2 4 6

, ,

, , , , ,
12 12 6 2

, , , ,
6 ...

2 30

h h

i j i j

i j i j i j i j i j

i j i j i j i j

L u x t R u x t

u x t u x t u x t u x t u x t
k rh k kh k

t x t t x t

u x t u x t u x t u x th k rh
rh rh

t x t x x x

+ −

    
= − + + + +

     

   
− − − +

     

                                             (2.17) 

Before simplifying Eq. (2.17), let us make the following relations: 

                         

( )

( ) ( ) ( )

2

2 2 4 2

,

, , , ,

t xx tt xxt t xxxxxx

tt xxt xxt xxxx

xxt i j xxxx i j xxxx i j

u u u u u u

u u u u

h ku x t h k u x t rh u x t k rh

   

 

 

= = = =

=  =

= = =
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Having utilized these relations, Eq. (2.17) will have the following final form:

  ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

2 3 6 4 52 4 2 2 2 2

2 3 6 2 2 3 2

, ,

, , , , , ,( 6 )
...

6 360 24 6

h h
i j i j

i j i j i j i j i j i j

L u x t R u x t

u x t u x t u x t u x t u x t u x tk h h k k h k

t x t x t x t x

 


+ − =

     −
− + − + + +

       

                (2.18)                                                                                                                                                              

Since,   
( ) ( )2

2

, ,
0

i j i ju x t u x t

t x


 
− =

 
, the scheme in Eq. (2.12) for solving Eq. (2.1) is fourth-order convergent in space and second-

order convergent in the time variable.  

 

2.3. Stability Analysis 

In this section, we present the stability analysis of Eq. (2.12) with Dirichlet boundary conditions using the matrix method. In 

matrix form, Eq. (2.12) can be written as  

                          1j jAu Bu+ =                                                                                                       (2.19)                                                                                                                      

Where A  and B  are matrices of order 1N − , and given by  

            

10 12 1 6 0 0 0

1 6 10 12 1 6 0 0

0 1 6 10 12 1 6 0
,

0 0

1 6 10 12 1 6

0 0 0 0 1 6 10 12

r r

r r r

r r r
A

r r r

r r

+ − 
 

− + −
 
 − + −

=  
 
 − + −
 

− + 

   

              

10 12 1 6 0 0 0

1 6 10 12 1 6 0 0

0 1 6 10 12 1 6 0

0 0

1 6 10 12 1 6

0 0 0 0 1 6 10 12

r r

r r r

r r r
B

r r r

r r

− + 
 

+ − +
 
 + − +

=  
 
 + − +
 

+ − 

 

For every row,  10 12 1 6 1 6 , 0r r r r+  − + −   . Hence, A is invertible. 

From Eq. (2.19), we obtain 

                       1 1j ju A Bu+ −=                                                                                                        (2.20) 

Since A and B are symmetric and commute, 

                1D A B−=                                                                                                                    (2.21)        
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is real and symmetric.  

Let ,k k   and k  are respectively the eigenvalues of ,A B , and D . The scheme in Eq. (2.12) is stable if the modulus of every 

eigenvalues of D  is less than unity. 

By the idea given in (Smith, 1985 p.156), 

         ( ) ( ) ( ) 210 12 2 1 6 cos 12 2 1 6 sin
2

k

k k
r r r

N N

 
 = + + − = − −  

         ( ) ( ) ( ) 210 12 2 1 6 cos 12 2 1 6 sin , 1(1) 1
2

k

k k
r r r k N

N N

 
 = − + + = − + = − .  

Hence, the eigenvalues of D  can be expressed in terms of and k k 
 
as: 

                                        

( )

( )

2

2

6 1 6 sin
2 1, 0

6 1 6 sin
2

k
k

k

k
r

N r
k

r
N







− +

= =   

− −

. 

Thus, the scheme in Eq. (2.12) is unconditionally stable for solving the one-dimensional heat equation with dirichlet boundary 

conditions. 

3. Richardson extrapolation 

Richardson extrapolation (RE) is a powerful computational technique that can be implemented in an attempt to increase the 

accuracy of the numerical solutions of differential equations (Samarskii, 2001). The RE can also be viewed as a technique that 

accelerates the convergence of the method. The basic concept behind the RE is to solve the difference scheme on two or more 

consecutive grids and then combine the resulting approximate solutions with appropriate weights to generate higher-order 

numerical solutions (Merga, F.E, Chemeda, H.M., 2021 and Siraj et al., 2019). 

Assume ,h k is the coarser grid and the approximate solution of the expression below is valid. 

                                 ( ) ( ) ( )4

,, , , ,k

h i j h kU u x t Ch R h k x t= + + 
                                 (3.1) 

For the finer grid, 2,h k ,  assume that the following expression is also valid.  

                                 ( ) ( )
4

,
2 2

, , , ,
2 2

k

h i j h k

h h
U u x t C R k x t

   
= + +    

   
                          (3.2)

 

where ( ),R h k  and ( )2,R h k  are the remainder terms of order ( )6 2,O h k   and C is a constant independent of h , and k . To 

eliminate 4Ch multiply Eq. (3.1) by 1 15− and Eq. (3.2) by 16 15  and then combine to get a better approximation on the coarser 

gird , .h k
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                                     ( ) ( )2 6 2

,

16
, , ,

15

k k

h hextr

i j h k

U U
U O h k x t

−
= +                             (3.3) 

Eq. (3.3) is the Richardson extrapolation technique combined with the scheme in Eq. (2.12) for solving the one-dimensional heat 

equation in Eq. (2.1) with Dirichlet boundary conditions. 

4. Numerical Experiments 

To study the performance of the proposed method, we considered two model problems of 1D heat equation with Dirichlet 

boundary conditions whose exact solution is available.  

The numerical results are reported using the maximum error e L  and the root mean square error  2L  at 1T =  for different 

values  h  are computed using the formulas: 

                                          ( ) ( )( ).

1 1
max ,1 ,1 .exact approx

i i
i N

e L u x u x
  −

= −
 

                                          ‖𝑒‖𝐿2 = √
1

𝑁
∑ |𝑢𝑒𝑥𝑎𝑐𝑡(𝑥𝑖, 1) − 𝑢𝑎𝑝𝑝𝑟𝑜𝑥.(𝑥𝑖, 1)|2
𝑁
𝑖=1 .

 

Example 1: Consider the one-dimensional heat equation (Abdul-Majid, 2009, Hooshmandasl et al., 2012)  

                                  , 0 1, 0t xxu u x t T=     ,           

with an initial condition: 

                                ( ,0) sin( ), 0 1u x x x=   ,    

and boundary conditions:            

                                 ( ) ( )0, 1, 0, 0 .u t u t t T= =    

And the exact solution is given by: 

 

                                 
2( , ) sin( )exp( ).U x t x t = −

 

In the subsequent tables of numerical values, FOW-RE is short for ‘fourth-Order scheme with RE’ and FOWO-RE is short for 

‘fourth-Order scheme without RE’. 
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Table 1: Maximum and root mean square errors for test problem 1 at T=1 and ∆t=0.0001 

h e L  -FOW-RE
 

2e L  -FOW-RE e L  -FOWO-RE
 

2e L  -FOWO-RE 

1 10  1.25705185e-11 6.13378494e-12 2.07625270e-08 1.39980928e-08 

1 20  
 8.35201813e-12 4.12476771e-12 1.25479361e-09 8.65889852e-10 

1 40  8.28850350e-12 4.11859049e-12 3.95158922e-11 2.75990963e-11 

1 80  8.28792173e-12 4.13107113e-12 3.63796927e-11 2.55650420e-11 

 

Table 2: Comparison of maximum and mean root square errors for model problem 1 at 

0.025h = and 0.0001t =  

 

t 

Present Method Hooshmandasl et al., 

(2012)
 

e L  -FOW-RE
 

2e L  -FOW-RE
 e L  

 
2e L  

 

0.1 5.972544e-09 2.967781e-09 6.79e-3
 

4.86e-3
 

0.3 2.488959e-09 1.236773e-09 3.76e-4
 

8.87e-5
 

0.5 5.762401e-10 2.863360e-10 2.44e-4
 

1.73e-3
 

0.7 1.120646e-10 5.568536e-11 3.17e-4
 

2.04e-4
 

0.9 2.001475e-11 9.945407e-12 3.14e-3
 

2.14e-3
 

1.0 8.288504e-12 4.131071e-12 3.32e-3
 

2.15e-3
 

 

 
Fig.1 Exact and numerical solutions of model problem 1 at different times 
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Fig.2   Solution profiles of the exact and approximate solutions of model problem 1 

Example 2: Consider the one-dimensional heat equation (Abdul-Majid, 2009, Hooshmandasl et al., 2012)  

                                      , 0 1, 0t xxu u x t T=     , 

whose initial and boundary conditions are respectively given by 

                                  
( ) ( )

( ) ( ) ( )

,0 sin , 0 1

0, 0, 1, sin 1 exp( ), 0 1

u x x x

u t u t t t

=  

= = −    

And its exact solution is given by 

                                  ( ) ( ), sin exp( ), 0 1, 0 1U x t x t x t= −    
 

Table 3: Comparison of Maximum and root mean square errors for test problem 2 at T=1 

and ∆t=0.0001 

h e L -FOW-RE
 

2e L - FOW-RE
 e L -FOWO-RE

 
2e L  FOWO-

RE
 

1 10  4.23461266e-12 2.10748968e-12 1.01487874e-08 6.97599928e-09 

1 20  
 4.13763468e-12 2.07310909e-12 6.17913831e-10 4.32712210e-10 

1 40  4.00940392e-12 2.02037252e-12 1.95038982e-11 1.38167780e-11 

1 80  4.18642898e-12 2.11563374e-12 1.79345427e-11 1.27775937e-11 
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Table 4: Comparison of maximum and mean root square errors for model problem 2 at 

0.025h = and 0.0001t =
 

 

t 

Present Method Hooshmandasl et al., 

(2012)
 

e L  -FOW-RE
 

2e L  -FOW-RE
 e L  

2e L  

0.1 5.896283e-12 2.952835e-12 1.07e-5
 

4.46e-6
 

0.3 7.521372e-12 3.788042e-12 3.45e-6
 

2.15e-7
 

0.5 6.537937e-12 3.295122e-12 5.13e-6
 

3.18e-6
 

0.7 5.400957e-12 2.722561e-12 7.45e-6
 

4.71e-6
 

0.9 4.428041e-12 2.231319e-12 9.47e-6
 

6.04e-6
 

1.0 4.009404e-12 2.020373e-12 1.02e-5
 

6.55e-6
 

 

 

Fig.3 Exact and numerical solutions of model problem 2 at different times 
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Fig.4 Solution profiles of the exact and approximate solutions of model problem 2 

5. DISCUSSION AND CONCLUSION 

5.1. DISCUSSION 

The numerical results presented in Tables (1, 2, 3 and 4) clearly show that when combined with RE, the proposed method is 

quite efficient for solving the one-dimensional heat equations. In the absence of the RE, the proposed method attains as accurate 

results as when it is combined with RE only if further mesh refinement is made which in turn requires extra computational time 

and memory. For instance, for both model problems, the accuracy attained by FOWO-RE when 1 80h =  is still lagging behind 

the accuracy obtained by FOW-RE even when coarser step lengths such as 1 10h =  is used. Besides, the numerical results 

presented in Tables (1 and 3) and the simulations in Figures (1 and 3) confirm that the numerical solutions are in a good agreement 

with the exact solution. The 3D simulations in Figures (2 and 4) also show that the application of Richardson extrapolation 

significantly improves the accuracy of the numerical results. The numerical results in Tables (2 and 4) further confirm that the 

present method significantly improves the results of Hooshmandasl et al. (2012).   

5.2.  CONCLUSION 

This paper presented fourth-order compact finite difference method combined with Richardson extrapolation for solving the one-

dimensional heat equation. The order of convergence and stability conditions of the present method was well established. To 

illustrate the applicability and efficiency of the method, two model problems are considered and solved for different values of 

the spatial and temporal step lengths h  and k  respectively. The numerical solutions are presented using Tables and the simulations 
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to the model problems are demonstrated using Figures generated via MATLAB codes. The proposed method is found to be 

unconditionally stable, consistent and generates accurate numerical solution for solving the one-dimensional heat equation. 
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